题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6665
题意:给你两个矩形的左顶点和右顶点,求这两个矩形把平面划分成多少个区域
思路:首先这一题在做的时候我和我的队友们是一种情况一种情况直接判断的,结果我们自闭1个半小时也没有做出来,后来看了题解,才知道原来这是一个求连通块的题。由于x,y题目给的很大,直接用数组是存不下的,但一共就四个点,所以可以把坐标离散化。但单纯的离散化可能或导致两个矩形原来不是重合的最后变成重合的啦,所以可以直接把离散化后的坐标成2,就可以解决这个问题,之后建图,直接跑一个dfs求连通块的个数就行。
具体操作请看代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[10][10],vis[10][10];
int x[5],y[5];
int X[5],Y[5];
int dx[]= {1,0,-1,0};
int dy[]= {0,1,0,-1};
void dfs(int x,int y,int color)
{
for(int i=0; i<4; i++)
{
int x1=x+dx[i];
int y1=y+dy[i];
if(x1>=0&&x1<=9&&y1>=0&&y1<=9&&a[x1][y1]==0&&vis[x1][y1]==0)
{
vis[x1][y1]=color;
dfs(x1,y1,color);
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
for(int i=1; i<=4; i++)
{
cin>>x[i]>>y[i];
X[i]=x[i],Y[i]=y[i];
}
//离散化X轴
sort(X+1,X+5);
int pos1=unique(X+1,X+5)-(X+1);
for(int i=1; i<=4; i++)
{
x[i]=lower_bound(X+1,X+1+pos1,x[i])-X;
}
//离散化Y轴
sort(Y+1,Y+5);
int pos2=unique(Y+1,Y+5)-(Y+1);
for(int i=1; i<=4; i++)
{
y[i]=lower_bound(Y+1,Y+1+pos2,y[i])-Y;
}
for(int i=1; i<=4; i++)
{
x[i]*=2,y[i]*=2;
}
memset(vis,0,sizeof(vis));
memset(a,0,sizeof(a));
for(int i=x[1]; i<=x[2]; i++)
{
a[i][y[1]]=1,a[i][y[2]]=1;
}
for(int i=y[1]; i<=y[2]; i++)
{
a[x[1]][i]=1,a[x[2]][i]=1;
}
for(int i=x[3]; i<=x[4]; i++)
{
a[i][y[3]]=1,a[i][y[4]]=1;
}
for(int i=y[3]; i<=y[4]; i++)
{
a[x[3]][i]=1,a[x[4]][i]=1;
}
int ans=0;
int color=1;
for(int i=0; i<=9; i++)
{
for(int j=0; j<=9; j++)
{
if(a[i][j]==0&&vis[i][j]==0)
{
vis[i][j]=color;
dfs(i,j,color);
color++;
}
}
}
cout<<color-1<<endl;
}
return 0;
}