【55】重建二叉树

重建二叉树

问题描述

输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。

例子:
在这里插入图片描述

解题思路

前序遍历的顺序是:中左右
中序遍历的顺序是:左中右

所以,可以由前序遍历找到子树的根节点,根据中序遍历分出左子树和右子树,在子树中按照同样的方法来还原二叉树,由此,可看出能够用递归来完成此题。

比如例题中的:由前序遍历数组得到根节点是3,在中序遍历数组中得到3的左边[9]是左子树,3的右边[15,20,7]是右子树。在3的左子树中由前序遍历数组可知根节点是9,9的左右子树为空,直接返回;在3的右子树中由前序遍历数组可知根节点是20,20的左子树是[15],20的右子树是[7]…以此类推,重建出整棵二叉树。

代码:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        int n = preorder.length;
        return Result(preorder,inorder,0,n-1,0,n-1);
    }

    public TreeNode Result(int[] preorder,int[] inorder,int l1,int r1,int l2,int r2){
        if(l1>r1 || l2>r2) // 即子树为空的情况
            return null;

        int root_index = l2; //表示根节点在中序遍历数组中的序号
        while(inorder[root_index] != preorder[l1])
            root_index++;

        TreeNode root = new TreeNode(preorder[l1]);//根节点在前序遍历数组中找
        root.left = Result(preorder,inorder,l1+1,l1+root_index-l2,l2,root_index-1); //l1+(root_index-l2) 即l1加上左子树的元素的长度
        root.right = Result(preorder,inorder,l1+root_index-l2+1,r1,root_index+1,r2); //l1+(root_index-l2)+1 即 左子树的最后一个元素的序号再加一
        return root;
    }
}

时间复杂度:O(n)
空间复杂度:O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值