重建二叉树
问题描述
输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
例子:
解题思路
前序遍历的顺序是:中左右
中序遍历的顺序是:左中右
所以,可以由前序遍历找到子树的根节点,根据中序遍历分出左子树和右子树,在子树中按照同样的方法来还原二叉树,由此,可看出能够用递归来完成此题。
比如例题中的:由前序遍历数组得到根节点是3,在中序遍历数组中得到3的左边[9]是左子树,3的右边[15,20,7]是右子树。在3的左子树中由前序遍历数组可知根节点是9,9的左右子树为空,直接返回;在3的右子树中由前序遍历数组可知根节点是20,20的左子树是[15],20的右子树是[7]…以此类推,重建出整棵二叉树。
代码:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
int n = preorder.length;
return Result(preorder,inorder,0,n-1,0,n-1);
}
public TreeNode Result(int[] preorder,int[] inorder,int l1,int r1,int l2,int r2){
if(l1>r1 || l2>r2) // 即子树为空的情况
return null;
int root_index = l2; //表示根节点在中序遍历数组中的序号
while(inorder[root_index] != preorder[l1])
root_index++;
TreeNode root = new TreeNode(preorder[l1]);//根节点在前序遍历数组中找
root.left = Result(preorder,inorder,l1+1,l1+root_index-l2,l2,root_index-1); //l1+(root_index-l2) 即l1加上左子树的元素的长度
root.right = Result(preorder,inorder,l1+root_index-l2+1,r1,root_index+1,r2); //l1+(root_index-l2)+1 即 左子树的最后一个元素的序号再加一
return root;
}
}
时间复杂度:O(n)
空间复杂度:O(n)