前言
疫情期间,我爸妈又开始炒股了,鉴于之前做过一个AI结合的量化交易项目,但是不是负责算法部分,所以想自己尝试一下,实现一个算法引擎。
纯数据科学只能做参考,最好结合传统量化交易和舆情分析,我后面有时间会尝试三者结合,希望有更好效果。
在本教程中,你将了解到如何使用被称作长短期记忆网络(LSTM)的时间序列模型。LSTM 模型在保持长期记忆方面非常强大。阅读这篇教程时,你将:
- 明白预测股市走势的动机;
- 下载股票数据 — 你将使用由 Alpha Vantage 或 Kaggle 收集的股票数据;
- 将数据划分为训练集和测试集,并将其标准化;
- 简要讨论一下为什么 LSTM 模型可以预测未来多步的情形;
- 使用现有数据预测股票趋势,并将结果可视化。
注意:请不要认为 LSTM 是一种可以完美预测股票趋势的可靠模型,也不要盲目使用它进行股票交易。我只是出于对机器学习的兴趣做了这个实验。在大部分情况下,这个模型的确能发现数据中的特定规律并准确预测股票的走势。但是否将其用于实际的股票市场取决于你自己。
为什么要用时间序列模型?
作为一名股民,如果你能对股票价格进行正确的建模,你就可以通过在合适的时机买入或卖出来获取利益。因此,你需要能通过一组历史数据来预测未来数据的模型——时间序列模型。
警告:股价本身因受到诸多因素影响而难以预测,这意味着你难以找到一种能完美预测股价的模型。并不只有我一人如此认为。普林斯顿大学的经济学教授 Burton Malkiel 在他 1973 年出版的《A Random Walk Down Wall Street》一书中写道:“如果股市足够高效,以至于人们能从公开的股价中知晓影响它的全部因素,那么人人都能像投资专业人士那样炒股”。
但是,请保持信心,用机器学习的方法来预测这完全随机的股价仍有一丝希望。我们至少能通过建模来预测这组数据的实际走势。换而言之,不必知晓股价的确切值,你只要能预测股价要涨还是要跌就万事大吉了。
# 请确保你安装了这些包,并且能运行成功以下代码
from pandas_datareader import data
import matplotlib.pyplot as plt
import pandas as pd
import datetime as dt
import urllib.request, json
import os
import numpy as np
import tensorflow as tf # TensorFlow 1.6 版本下测试通过
from sklearn.preprocessing import MinMaxScaler
下载数据
你可以从以下来源下载数据:
- Alpha Vantage。首先,你必须从 这个网站 获取所需的 API key。在此之后,将它的值赋给变量
api_key
。 - 从 这个页面 下载并将其中的 Stocks 文件夹拷贝到你的工程目录下。
股价中包含几种不同的数据,它们是:
- 开盘价:一天中股票刚开盘时的价格;
- 收盘价:一天中股票收盘时的价格;
- 最高价:一天中股价的最大值;
- 最低价:一天中股价的最小值。
从 Alpha Vantage 获取数据
为了从 Alpha Vantage 上下载美国航空公司的股价数据用于分析,你要将行情显示代号 ticker
设置为 "AAL"
。同时,你也要定义一个 url_string
变量来获取包含最近 20 年内的全部股价信息的 JSON 文件,以及文件保存路径 file_to_save
。别忘了用你的 ticker
变量来帮助你命名你下载下来的文件。
接下来,设定一个条件:如果本地没有保存的数据文件,就从 url_string
指明的 URL 下载数据,并将其中的日期、最低价、最高价、交易量、开盘价和收盘价存入 Pandas 的 DataFrame df
中,再将其保存到 file_to_save
;否则直接从本地读取 csv 文件就好了。
从 Kaggle 获取数据
从 Kaggle 上找到的数据是一系列 csv 表格,你不需要对它进行任何处理就可以直接读入 Pandas 的 DataFrame 中。确保你正确地将 Stocks 文件夹放在项目的主目录中。
读取数据
现在,将这些数据打印到 DataFrame 中吧!由于数据的顺序在时间序列模型中至关重要,所以请确保你的数据已经按照日期排好序了。
# 按日期排序
df = df.sort_values('Date')
# 检查结果
df.head()
数据可视化
看看你的数据,并从中找到伴随时间推移而具有的不同规律。
plt.figure(figsize = (18,9))
plt.plot(range(df.shape[0]),(df['Low']+df['High'])/2.0)
plt.xticks(range(0,df.shape[0],500),df['Date'].loc[::500],rotation=45)
plt.xlabel('Date',fontsize=18)
plt.ylabel('Mid Price',fontsize=18)
plt.show()

这幅图包含了很多信息。我特意选取了这家公司的股价图,因为它包含了股价的多种不同规律。这将使你的模型更健壮,也让它能更好地预测不同情形下的股价。
另一件值得注意的事情是 2017 年的股价远比上世纪七十年代的股价高且波动更大。因此,你要在数据标准化的过程中,注意让这些部分的数据落在相近的数值区间内。
将数据划分为训练集和测试集
首先通过对每一天的最高和最低价的平均值来算出 mid_prices
。
# 首先用最高和最低价来算出中间价
high_prices = df.loc[:,'High'].as_matrix()
low_prices = df.loc[:,'Low'].as_matrix()
mid_prices = (high_prices+low_prices)/2.0
然后你就可以划分数据集了。前 11000 个数据属于训练集,剩下的都属于测试集。
train_data = mid_prices[:11000]
test_data = mid_prices[11000:]
接下来我们需要一个换算器 scaler
用于标准化数据。MinMaxScalar
会将所有数据换算到 0 和 1 之间。同时,你也可以将两个数据集都调整为 [data_size, num_features]
的大小。
# 将所有数据缩放到 0 和 1 之间
# 在缩放时请注意,缩放测试集数据时请使用缩放训练集数据的参数
# 因为在测试前你是不应当知道测试集数据的
scaler = MinMaxScaler()
train_data = train_data.reshape(-1,1)
test_data = test_data.reshape(-1,1)
上面我们注意到不同年代的股价处于不同的价位,如果不做特殊处理的话,在标准化后的数据中,上世纪的股价数据将非常接近于 0。这对模型的学习过程没啥好处。所以我们将整个时间序列划分为若干个区间,并在每一个区间上做标准化。这里每一个区间的长度取值为 2500。
提示:因为每一个区间都被独立地初始化,所以在两个区间的交界处会引入一个“突变”。为了避免这个“突变”给我们的模型带来大麻烦,这里的每一个区间长度不要太小。
本例中会引入 4 个“突变”,鉴于数据有 11000 组,所以它们无关紧要。
# 使用训练集来训练换算器 scaler,并且调整数据使之更平滑
smoothing_window_size = 2500
for di in