代码随想录算法训练营第9天 | 28. 实现 strStr()
28. 实现 strStr()
[题目链接](https://leetcode.cn/problems/find-the-index-of-the-first-occurrence-in-a-string/
思路:
KMP思想
出现字符串不匹配时,可以知道一部分之前已经匹配的文本内容,可以利用这些信息避免从头再去做匹配了。
重要概念:前缀表
前缀表是用来回退的,它记录了模式串与主串(文本串)不匹配的时候,模式串应该从哪里开始重新匹配。
如果求前缀表(next数组)呢?
- 初始化
- 处理前后缀不相同的情况
- 处理前后缀相同的情况
![[微信图片_20230519160339.jpg]]
使用next数组来做匹配
类似于找next数组操作
代码部分:
class Solution {
public int strStr(String haystack, String needle) {
if(needle.length() == 0) return 0;
int[] next = new int[needle.length()];
char[] need = needle.toCharArray();
char[] hay = haystack.toCharArray();
getNext(next, need);
int j = 0;
for(int i=0; i<haystack.length();i++){
while(j>0 && need[j] != hay[i]){
j = next[j-1];// j 寻找之前匹配的位置
}
if(need[j] == hay[i]){ // 匹配,j和i同时向后移动
j++;
}
if(j == need.length){ // needle全部匹配
return i-need.length+1;
}
}
return -1;
}
public void getNext(int[] next, char[] s){
int j = 0; //前缀末尾 同时也是子串的最长相等前后缀的长度
next[0] = 0;
for(int i=1;i<s.length;i++){
while(j>0 && s[i] != s[j]){
j = next[j-1]; //回溯
}
if(s[i] == s[j]){
j++;
}
next[i] = j; // 将j(前缀的长度)赋给next[i]
}
}
}
时间复杂度分析:
n为文本串长度,m为模式串长度。匹配的过程中,根据前缀表不断调整匹配的位置,可以看出匹配的过程是O(n),之前还要单独生成next数组,时间复杂度是O(m)。所以整个KMP算法的时间复杂度是O(n+m)的。
暴力的解法是O(n × m),所以KMP在字符串匹配中极大地提高了搜索的效率。
难点理解
-
为什么
while(j>0 && s[i] != s[j])
用while循环?
这段代码的目的是:
处理前后缀不相同,回溯是个连续的过程, 要一直找到那个匹配的,所以是while不是if,又因为j起始位置是0,不能再回溯,所以是j>0
-
关于指针回溯求next的理解
每次求next[i]
,可看作前缀与后缀的一次匹配,在该过程中就可以用上之前所求的next,若匹配失败,则像模式串与父串匹配一样,将指针移到next[j-1]
上。
求next过程实际上是dp(动态规划),只与前一个状态有关:
若不匹配,一直往前退到0或匹配为止
若匹配,则将之前的结果传递:
因为之前的结果不为0时,前后缀有相等的部分,所以j所指的实际是与当前值相等的前缀,可视为将前缀从前面拖了过来,就不必将指针从前缀开始匹配了,所以之前的结果是可以传递的。