Day9 实现 strStr()

文章介绍了如何使用KMP算法解决LeetCode上的28题,即实现strStr()函数,通过构建前缀表(next数组)来优化字符串匹配过程,避免暴力求解的O(n*m)时间复杂度,达到O(n+m)。文章详细解释了KMP算法的核心思想、前缀表的生成以及匹配过程中的指针回溯策略。
摘要由CSDN通过智能技术生成

代码随想录算法训练营第9天 | 28. 实现 strStr()

28. 实现 strStr()

[题目链接](https://leetcode.cn/problems/find-the-index-of-the-first-occurrence-in-a-string/

思路:

KMP思想

出现字符串不匹配时,可以知道一部分之前已经匹配的文本内容,可以利用这些信息避免从头再去做匹配了。

重要概念:前缀表

前缀表是用来回退的,它记录了模式串与主串(文本串)不匹配的时候,模式串应该从哪里开始重新匹配。

如果求前缀表(next数组)呢?
  1. 初始化
  2. 处理前后缀不相同的情况
  3. 处理前后缀相同的情况
    ![[微信图片_20230519160339.jpg]]
使用next数组来做匹配

类似于找next数组操作

代码部分:

class Solution {
    public int strStr(String haystack, String needle) {
        if(needle.length() == 0) return 0;
        int[] next = new int[needle.length()];
        char[] need = needle.toCharArray();
        char[] hay = haystack.toCharArray();
        getNext(next, need);
  
        int j = 0;
        for(int i=0; i<haystack.length();i++){
            while(j>0 && need[j] != hay[i]){
                j = next[j-1];// j 寻找之前匹配的位置
            }
            if(need[j] == hay[i]){ // 匹配,j和i同时向后移动
                j++;
            }
            if(j == need.length){ // needle全部匹配
                return i-need.length+1;
            }
        }
        return -1;
    }

    public void getNext(int[] next, char[] s){
        int j = 0; //前缀末尾 同时也是子串的最长相等前后缀的长度
        next[0] = 0;
        for(int i=1;i<s.length;i++){
            while(j>0 && s[i] != s[j]){
                j = next[j-1]; //回溯
            }
            if(s[i] == s[j]){
                j++;
            }
            next[i] = j;   // 将j(前缀的长度)赋给next[i]
        }
    }
}

时间复杂度分析:
n为文本串长度,m为模式串长度。匹配的过程中,根据前缀表不断调整匹配的位置,可以看出匹配的过程是O(n),之前还要单独生成next数组,时间复杂度是O(m)。所以整个KMP算法的时间复杂度是O(n+m)的。
暴力的解法是O(n × m),所以KMP在字符串匹配中极大地提高了搜索的效率。

难点理解

  1. 为什么while(j>0 && s[i] != s[j])用while循环?
    这段代码的目的是:
    处理前后缀不相同,回溯是个连续的过程, 要一直找到那个匹配的,所以是while不是if,又因为j起始位置是0,不能再回溯,所以是j>0

  2. 关于指针回溯求next的理解
    每次求next[i],可看作前缀与后缀的一次匹配,在该过程中就可以用上之前所求的next,若匹配失败,则像模式串与父串匹配一样,将指针移到next[j-1]上。
    求next过程实际上是dp(动态规划),只与前一个状态有关:
    若不匹配,一直往前退到0或匹配为止
    若匹配,则将之前的结果传递:
    因为之前的结果不为0时,前后缀有相等的部分,所以j所指的实际是与当前值相等的前缀,可视为将前缀从前面拖了过来,就不必将指针从前缀开始匹配了,所以之前的结果是可以传递的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值