代码随想录算法训练营第12天 | 239. 滑动窗口最大值、347. 前 K 个高频元素
344.反转字符串
题目链接
给你一个整数数组 nums
,有一个大小为 k
的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k
个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
示例 2:
输入:nums = [1], k = 1
输出:[1]
思路:
来自于LeetCode题解
在滑动窗口形成及移动的过程中,元素是从窗口的右侧进入的,然后由于窗口大小是固定的,因此多余的元素是从窗口左侧移除的。 一端进入,另一端移除,可以借助队列来求解。
题目要求是返回每个窗口中的最大值,开始分析。
左右指针都从0开始。
- 首先队列为空的时候,right指向的位置加到队列
- right指针考察的元素小于队尾元素时,要入队,目的是为了观察其是否是下一个窗口的最大值。这个时候队列会有一个特征,始终保持递减。
- right指针考察的元素大于等于队尾元素时,就要把队列中所有小于该元素的值全部踢出去后(while实现,不要忘记队列不能为空),再入队,和前面一样,始终保持队列递减。
- 还要判断队首元素的下标不能小于滑动窗口的左边界left,这时队首元素已经出了滑动窗口范围,因此将其从队首移除。
- 当right指针移动到比left大
k-1
的时候,此时[left,right]
包含了k个元素,滑动窗口形成,返回队首元素(也就是最大值)。之后left跟随right每次加1,始终保持滑动窗口。[注意:这边只做返回该窗口最大值的一个操作,不能做把这个队首元素踢出去,因为此时队首元素不一定小于left] - 队列中存index,方便比较。
代码部分:
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
Deque<Integer> queue = new LinkedList<>();
int[] ans = new int[nums.length - k + 1]; // 窗口个数
int left = 0;
// 注意三个逻辑块的顺序
// 如果队列不为空且当前考察元素大于等于队尾元素,则将队尾元素移除。
// 直到,队列为空或当前考察元素小于新的队尾元素
for(int right = 0; right <nums.length; right++){
while(!queue.isEmpty() && nums[right] >= nums[queue.peekLast()]){
// 队列是单调递减的,这样巧妙的(省去比较步骤)把小于当前考察元素的值全部从队列中踢出去
queue.removeLast();
}
// 存储元素下标
queue.addLast(right);
// 当队首元素的下标小于滑动窗口左侧边界left时
// 表示队首元素已经不再滑动窗口内,因此将其从队首移除
if(queue.peekFirst() < left){
queue.removeFirst();
}
if(right - left == k - 1){
ans[left] = nums[queue.peekFirst()];
left++;
}
}
return ans;
}
}
第二种写法:
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
Deque<Integer> queue = new LinkedList<>();
int[] ans = new int[nums.length - k + 1]; // 窗口个数
// 注意三个逻辑块的顺序
// 如果队列不为空且当前考察元素大于等于队尾元素,则将队尾元素移除。
// 直到,队列为空或当前考察元素小于新的队尾元素
for(int right = 0; right <nums.length; right++){
while(!queue.isEmpty() && nums[right] >= nums[queue.peekLast()]){
// 队列是单调递减的,这样巧妙的(省去比较步骤)把小于当前考察元素的值全部从队列中踢出去
queue.removeLast();
}
// 存储元素下标
queue.addLast(right);
// 计算窗口左侧边界
int left = right - k +1;
// 当队首元素的下标小于滑动窗口左侧边界left时
// 表示队首元素已经不再滑动窗口内,因此将其从队首移除
if(queue.peekFirst() < left){
queue.removeFirst();
}
// 由于数组下标从0开始,因此当窗口右边界right+1大于等于窗口大小k时
// 意味着窗口形成。此时,队首元素就是该窗口内的最大值
if (right +1 >= k) {
res[left] = nums[queue.peekFirst()];
}
}
return ans;
}
}
347. 前 K 个高频元素
题目链接
给你一个整数数组 nums
和一个整数 k
,请你返回其中出现频率前 k
高的元素。你可以按 任意顺序返回答案。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
示例 2:
输入: nums = [1], k = 1
输出: [1]
思路:
这道题主要实现三个功能:
-
要统计元素出现频率
实现方法:用map来统计出现频率。 -
对频率排序
实现方法:PriorityQueue(优先级队列是一个表面队列的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。而且优先级队列内部元素是自动依照元素的权值排列) -
找出前K个高频元素
堆的解释:是一个完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。所以有两种,父亲结点大于等于左右孩子就是大顶堆(堆头是最大元素),父亲结点小于等于左右孩子就是小顶堆(堆头是最小元素)。
用哪个呢,题目要前k个高频元素,如果定义一个size为k的大顶堆,在每次更新大顶推的时候,把最大的弹出来,所以要对所有元素排序,保留前k个。逆向思维,如果使用小顶堆,小顶堆每次把最小的弹出去,所以size为k的小顶堆里面剩下的就是我们想要的最大的k个元素。
![[Pasted image 20230523000912.png]]
代码部分:
基于小顶堆实现:
/*Comparator接口说明:
* 返回负数,形参中第一个参数排在前面;返回正数,形参中第二个参数排在前面
* 对于队列:排在前面意味着往队头靠
* 对于堆(使用PriorityQueue实现):从队头到队尾按从小到大排就是最小堆(小顶堆),
* 从队头到队尾按从大到小排就是最大堆(大顶堆)--->队头元素相当于堆的根节点
* */
class Solution {
public int[] topKFrequent(int[] nums, int k) {
//key为数组元素值,val为对应出现次数
HashMap<Integer, Integer> map = new HashMap<>();
for(int num: nums){
map.put(num, map.getOrDefault(num, 0) + 1);
}
//在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数
//出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(相当于小顶堆)
PriorityQueue<int[]> pq = new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
for(Map.Entry<Integer,Integer> entry: map.entrySet()){
if(pq.size() < k){ //小顶堆元素个数小于k个时直接加
pq.add(new int[]{entry.getKey(), entry.getValue()});
}else{
//当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
if(entry.getValue() > pq.peek()[1]){
pq.poll(); //弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
pq.add(new int[]{entry.getKey(), entry.getValue()});
}
}
}
int[] ans = new int[k];
for(int i = k-1; i>=0; i--){
//依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
ans[i] = pq.poll()[0];
}
return ans;
}
}
基于大顶堆实现:
class Solution {
public int[] topKFrequent1(int[] nums, int k) {
Map<Integer,Integer> map = new HashMap<>();//key为数组元素值,val为对应出现次数
for(int num:nums){
map.put(num,map.getOrDefault(num,0)+1);
}
//在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数
//出现次数按从队头到队尾的顺序是从大到小排,出现次数最多的在队头(相当于大顶堆)
PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2)->pair2[1]-pair1[1]);
for(Map.Entry<Integer,Integer> entry:map.entrySet()){//大顶堆需要对所有元素进行排序
pq.add(new int[]{entry.getKey(),entry.getValue()});
}
int[] ans = new int[k];
for(int i=0;i<k;i++){//依次从队头弹出k个,就是出现频率前k高的元素
ans[i] = pq.poll()[0];
}
return ans;
}
}