自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

记录知识、锤炼自我

Spring、Spring Boot、Spring Cloud、DevOps、Redis、Mysql、微服务、云原生、大数据.....你想要的这里都有

  • 博客(798)
  • 资源 (2)
  • 收藏
  • 关注

原创 NumPy 2.x 完全指南【四十五】离散傅里叶变换函数

傅里叶变换的基本思想首先由傅里叶提出,所以以其名字来命名以示纪念。从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

2025-11-18 16:04:51 1149

原创 NumPy 2.x 完全指南【四十四】深度学习中的张量

张量 (Tensor)的表现形式和应用方式会因研究领域和对象的不同而产生差异。不同于数学、物理中复杂的理论和公式,深度学习中张量剥离了复杂的变换规则与几何意义,主要应用于数据的高效表示与计算,可理解为多维数组。具有任意的维度,如一维、二维、三维等。在 Numpy 中,张量就是使用 numpy.ndarray(N维数组)对象表示。————————————————版权声明:本文为CSDN博主「墨 禹」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https:/

2025-11-18 13:47:10 655

原创 NumPy 2.x 完全指南【四十三】线性代数之矩阵运算

说起矩阵(Matrix),很多人肯定会想到一部电影《黑客帝国》(The Matrix),如果有个戴墨镜的神秘的黑衣人,告诉你所生活的世界并不是真实的,而是由 0 和 1 组成的一个计算机程序(虚拟矩阵空间)。吞下蓝色药丸,你会忘记刚刚发生的一切,继续生活在虚幻中,吞下红色药丸,你会来到残酷的真实世界,你会怎么选?

2025-11-18 13:40:57 1087

原创 NumPy 2.x 完全指南【四十二】线性代数之向量运算

在数学中向量是重要和基本的概念之一,既是代数研究对象,也是几何研究对象,是沟通几何与代数的桥梁。一般在高二数学中,会学习平面向量(二维空间)或者空间向量(三维空间),在数学教材中的定义是,把既有大小又有方向的量叫做向量,只有大小没有方向的量称为数量。

2025-10-30 13:32:26 1138

原创 NumPy 2.x 完全指南【四十一】线性代数函数介绍

线性代数是数学中的一个分支,研究的是向量、矩阵以及线性方程组的性质和运算。它是高等数学中的基础工具之一,尤其在数据处理、优化算法、信号处理、图像识别等方面起着核心作用。在机器学习、计算机科学、物理学、经济学等多个领域都有广泛的应用。

2025-10-30 13:31:23 992

原创 NumPy 2.x 完全指南【四十】统计函数

顺序统计主要处理与数据排序和分布位置相关的计算,用于分析数据的范围和分布情况。

2025-09-16 10:57:09 1013

原创 NumPy 2.x 完全指南【三十九】概率分布函数

numpy.random.Generator 支持多种概率分布函数,用于从各种分布中抽取样本。

2025-09-16 10:53:14 851

原创 NumPy 2.x 完全指南【三十八】伪随机数生成器

numpy.random 模块是 NumPy 库中用于生成随机数的核心模块,它实现了伪随机数生成器(Pseudorandom Number Generators, 简称 PRNGs 或 RNGs)。这些生成器能够从各种概率分布中抽取样本,是科学计算、数据分析和机器学习中不可或缺的工具。

2025-09-12 10:56:17 1227

原创 NumPy 2.x 完全指南【三十七】集合操作、排序函数

NumPy 提供了多个用于处理数组中集合操作的函数,这些函数能够高效地执行诸如去重、交集、并集、差集等常见的数学集合运算。

2025-09-12 10:42:33 945

原创 NumPy 2.x 完全指南【三十六】查询、聚合函数

聚合函数(Aggregate Functions)是数据库、数据分析和编程中用于对数据进行汇总、计算、统计等操作的函数。它们通常用于将多个数据值汇总成单一的值,这个值代表了数据集的某种统计特征或总结。聚合函数在数据分析、报告生成、统计分析等场景中广泛使用。

2025-09-10 10:49:35 907

原创 NumPy 2.x 完全指南【三十五】通用函数(ufunc)之自定义通用函数

在 NumPy 中,通用函数是 numpy.ufunc 类的实例,这意味着许多你熟悉的函数(如 np.add, np.multiply, np.sin 等)虽然是函数,但实际上是某个“类”的“对象”。在调用通用函数时,由 NumPy 内部通过编译的 C 代码实现和初始化 ufunc 实例。

2025-09-10 10:46:36 881

原创 NumPy 2.x 完全指南【三十四】通用函数(ufunc)之比较、逻辑运算、极值、位操作、浮点函数

浮点函数专门设计用来高效、正确地处理浮点数数组及其特有的运算问题。

2025-09-04 14:45:16 1117

原创 NumPy 2.x 完全指南【三十三】通用函数(ufunc)之三角、双曲函数

通用函数(简称 ufunc)是一种能对数组中的每个元素进行高效逐元素操作的函数,支持数组广播、类型转换以及若干其他标准特性。

2025-09-04 14:44:34 1038

原创 NumPy 2.x 完全指南【三十二】通用函数(ufunc)之数学运算函数

通用函数(简称 ufunc)是一种能对数组中的每个元素进行高效逐元素操作的函数,支持数组广播、类型转换以及若干其他标准特性。

2025-08-28 16:26:04 1427

原创 NumPy 2.x 完全指南【三十一】布尔数组索引

定义:通过布尔掩码(True/False值)选择满足条件的元素。

2025-08-28 16:25:40 1083

原创 NumPy 2.x 完全指南【三十】整数数组索引

在 NumPy 中,高级索引允许通过非连续的、复杂的规则选择数组中的元素。

2025-07-29 13:57:03 1255

原创 NumPy 2.x 完全指南【二十九】数组迭代器

NumPy 数组支持迭代器协议,如果使用 Python for 循环进行迭代时,实际上是在数组的第一个维度(轴 0 )上进行迭代。

2025-07-29 13:55:40 731

原创 NumPy 2.x 完全指南【二十八】日期时间类型

从 NumPy 1.7 开始,Numpy 原生支持日期时间数据类型,该数据类型称为 datetime64,之所以命名为 datetime64 是因为 datetime 已被 Python 标准库占用。

2025-07-14 16:53:27 1287

原创 NumPy 2.x 完全指南【二十七】字符串和字节数组

在 NumPy 2.0 之前,固定宽度的 numpy.str_、numpy.bytes_ 和 numpy.void 数据类型是 NumPy 中处理字符串和字节串的唯一类型。

2025-07-14 16:52:36 1176

原创 NumPy 2.x 完全指南【二十六】掩码数组

在许多情况下,数据集可能不完整或受到无效数据的污染。例如,传感器可能未能记录数据,或者记录了无效的值。numpy.ma 模块通过引入掩码数组(MaskedArray)提供了一个便捷的解决方案,是一个支持带有掩码的数组。

2025-06-11 11:00:15 1483

原创 NumPy 2.x 完全指南【二十五】记录数组

基于便利性考虑,NumPy 提供了 numpy.recarray 记录数组,它也是 ndarray 的子类,是一种特殊的结构化数组,允许通过属性访问结构化数组的字段,而不仅仅是通过索引。

2025-06-11 10:38:52 656

原创 NumPy 2.x 完全指南【二十四】结构化数组

需要注意的是还有个数组标量类型不要搞混淆了,NumPy 提供多种标量类型(如 int32, float64, complex128 等),用于描述数组元素的原子数据类型,它们的顶级父类是 numpy.generic ,不是 numpy.dtype 对象。

2025-06-04 11:03:42 1344

原创 NumPy 2.x 完全指南【二十三】数据类型对象

需要注意的是还有个数组标量类型不要搞混淆了,NumPy 提供多种标量类型(如 int32, float64, complex128 等),用于描述数组元素的原子数据类型,它们的顶级父类是 numpy.generic ,不是 numpy.dtype 对象。

2025-06-04 11:01:51 1142

原创 NumPy 2.x 完全指南【二十二】数组标量

Python 只定义了特定数据类的单一类型,在一般的编程场景中,不需要关注数据如何在计算机中表示,但是在在科学计算中,通常需要更多的控制。NumPy 在基础 Python 类型的基础上提供了 24 种新的不同类型的标量,这些类型描述符大多基于 C 语言中的类型(CPython 是用 C 语言编写的),并且有几个类型与 Python 类型兼容。

2025-05-29 15:28:59 1275

原创 NumPy 2.x 完全指南【二十一】元素重排操作

numpy.flip: 沿指定轴翻转数组元素顺序,返回视图,共享原数组内存。

2025-05-29 15:28:17 833

原创 NumPy 2.x 完全指南【二十】维度操作函数

Numpy 提供了一系列强大的函数,帮助开发者灵活调整数组维度、适配广播规则,并简化复杂计算:

2025-05-26 14:17:02 816

原创 NumPy 2.x 完全指南【十九】广播机制

广播(Broadcasting)机制:在满足特定条件的情况下,较小的数组会在较大的数组上进行自动扩展,使它们的形状兼容,从而允许不同形状的数组之间进行数值运算。

2025-05-26 14:16:38 1227

原创 NumPy 2.x 完全指南【十八】数组元素的新增和删除

numpy.insert():在数组的指定轴(维度)的给定索引位置前插入值,返回新数组(原数组不变)。

2025-05-22 11:40:58 1166

原创 NumPy 2.x 完全指南【十七】转置操作

在机器学习中转置常用于:调整图像数据的通道顺序。将时间序列数据从 (序列长度, 特征数) 转为 (特征数, 序列长度)。神经网络中的权重矩阵维度匹配。卷积操作中的滤波器方向调整。

2025-05-22 11:38:58 2001

原创 NumPy 2.x 完全指南【十六】分割数组

数组分割是指将一个数组拆分为多个子数组的操作,常用于数据处理、并行计算、分块处理等场景。NumPy 提供了多种分割函数,允许用户沿不同方向(轴)按需分割数组。

2025-05-21 11:02:07 1256

原创 NumPy 2.x 完全指南【十五】合并数组

合并数组是指将多个数组按照特定规则组合成一个新数组的操作。

2025-05-21 10:56:05 1072

原创 NumPy 2.x 完全指南【十四】基础操作 & 改变数组形状

NumPy 提供了一系列的数组操作函数或方法,包括形状调整、元素增删、合并拆分、数学运算等,是数据科学、机器学习和科学计算中处理数值数据的核心工具。

2025-05-20 16:31:46 1164

原创 NumPy 2.x 完全指南【十三】复制和视图

在操作 NumPy 数组时,可以通过视图直接访问内部数据缓冲区,而无需复制数据。这能确保良好的性能,但如果用户不了解这一机制,可能会导致一些不必要的问题。因此,了解这两个术语的区别,以及哪些操作返回复制,哪些操作返回视图非常重要。

2025-05-20 16:31:25 918

原创 NumPy 2.x 完全指南【十二】内存布局

内存布局(Memory Layout)是指数据或程序在计算机内存中的组织方式,它决定了数据如何存储、访问和解释,存布局的设计会直接影响性能、空间利用率和兼容性。

2025-05-19 16:34:06 1028

原创 NumPy 2.x 完全指南【十一】N 维数组对象(ndarray)

在之前的篇章中,有提到 ndarray 是 NumPy 中最重要的一个类,它表示 N 维数组对象,该对象是用于存放同类型元素的多维数组。接下来我们全面的了解一下 ndarray 。

2025-05-19 16:33:46 1365

原创 NumPy 2.x 完全指南【十】基础索引

NumPy 数组支持比 Python 原生列表更强大的索引功能,根据索引对象的类型划分了三种方式。

2025-05-13 14:29:28 986

原创 NumPy 2.x 完全指南【九】常量

NumPy 提供了一系列预定义的数学和科学计算常量,比如像 π 、 e 等经常会用到的常数,在需要使用时可直接通过 numpy 模块访问。

2025-05-13 14:28:43 697

原创 NumPy 2.x 完全指南【八】根据形状创建数组

NumPy 提供了多个基于形状创建数组的函数,通过指定维度结构创建数组,不依赖已有数据内容。形状可以直接指定,也可以通过复制或参照已有数组的结构。

2025-05-12 10:40:01 1210

原创 NumPy 2.x 完全指南【七】根据数值范围创建数组

在 Python3 中我们学过 range 函数,它是一个用于生成整数序列的内置函数,广泛用于循环控制和序列生成。range() 返回的是可迭代 range 对象,不预先生成所有元素,而是需要时才生成下一个数。

2025-05-12 10:39:28 1334

原创 NumPy 2.x 完全指南【六】根据现有数据创建数组

根据现有数据创建数组是指将已有的数据(如列表、元组、其他数组、文件数据等)转换为 NumPy 数组,无需手动初始化或填充数据。

2025-05-09 14:18:03 1129

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除