中值定理

一、涉及 f ( x ) f(x) f(x)的定理——预备定理
f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,则:
(1)有界性定理: ∃ k > 0 , ∀ x ∈ [ a , b ] \exists k>0,\forall x\in[a,b] k>0,x[a,b],使得 ∣ f ( x ) ∣ ≤ k |f(x)|\leq k f(x)k
(2)最值定理: m ≤ f ( x ) ≤ M m\leq f(x)\leq M mf(x)M,其中 m , M m,M m,M分别为 f ( x ) f(x) f(x)的最小值和最大值。
(3)介值定理:当 m ≤ μ ≤ M m\leq \mu \leq M mμM时, ∃ ξ ∈ [ a , b ] , 使 得 f ( ξ ) = μ \exists \xi\in[a,b],使得f(\xi)=\mu ξ[a,b],使f(ξ)=μ
(4)零点定理(研究方程根的存在性):当 f ( a ) f ( b ) &lt; 0 f(a)f(b)&lt;0 f(a)f(b)<0时, ∃ ξ ∈ ( a , b ) \exists \xi\in(a,b) ξ(a,b),使得 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0
二、涉及 f ′ ( x ) f&#x27;(x) f(x)的定理——主体定理
(1)费马定理: 设 f ( x ) 在 x = x 0 设f(x)在x=x_0 f(x)x=x0处可导且取得极值,则 f ′ ( x ) = 0 f&#x27;(x)=0 f(x)=0
(2)罗尔定理:设 f ( x ) 在 [ a , b ] f(x)在[a,b] f(x)[a,b]上连续, ( a , b ) (a,b) (a,b)上可导,且 f ( a ) = f ( b ) , 则 ∃ ξ ∈ ( a , b ) , 使 得 f ′ ( ξ ) = 0 f(a)=f(b),则\exists\xi\in(a,b),使得f&#x27;(\xi)=0 f(a)=f(b)ξ(a,b),使f(ξ)=0
(3)拉格朗日中值定理:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)上可导,则 ∃ ξ ∈ ( a , b ) \exists\xi\in(a,b) ξ(a,b),使得 f ′ ( ξ ) = f ( b ) − f ( a ) b − a f&#x27;(\xi)=\displaystyle{{f(b)-f(a)}\over{b-a}} f(ξ)=baf(b)f(a)
(4)柯西中值定理:设 f ( x ) 、 g ( x ) f(x)、g(x) f(x)g(x)满足在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)上可导, g ′ ( x ) ≠ 0 g&#x27;(x)\neq 0 g(x)̸=0,则存在 ∃ ξ ∈ ( a , b ) \exists\xi\in(a,b) ξ(a,b),使得 f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \displaystyle{{f&#x27;(\xi)}\over{g&#x27;(\xi)}}={{f(b)-f(a)}\over{g(b)-g(a)}} g(ξ)f(ξ)=g(b)g(a)f(b)f(a)
(5)泰勒定理
1、带拉氏余项的 n n n阶泰勒公式(证明题)
f ( x ) f(x) f(x)在某领域内存在 n + 1 n+1 n+1阶导数
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f n ( x 0 ) n ! ( x − x 0 ) n + f n + 1 ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x)=f(x_0)+f&#x27;(x_0)(x-x_0)+\displaystyle{{f&#x27;&#x27;(x_0)}\over{2!}}(x-x_0)^2+\dots+{{f^{n}(x_0)}\over{n!}}(x-x_0)^n+{{f^{n+1}(\xi)}\over{(n+1)!}}(x-x_0)^{n+1} f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!fn(x0)(xx0)n+(n+1)!fn+1(ξ)(xx0)n+1
2、带佩氏余项的泰勒公式(计算题)
f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0 n + 1 n+1 n+1阶可导
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f n ( x − x 0 ) n ! ( x − x 0 ) n + o ( x − x 0 ) n f(x)=f(x_0)+f&#x27;(x_0)(x-x_0)+\displaystyle{{f&#x27;&#x27;(x_0)}\over{2!}}(x-x_0)^2+\dots+{{f^{n}(x-x_0)}\over{n!}}(x-x_0)^n+o(x-x_0)^n f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!fn(xx0)(xx0)n+o(xx0)n
x 0 = 0 x_0=0 x0=0时,为麦克劳林展式
三、题型
(1)涉及 f ( x ) f(x) f(x)的问题

例1: f ( x ) f(x) f(x) [ 0 , 2 ] [0,2] [0,2]上连续,在 ( 0 , 2 ) (0,2) (0,2)内可导, 3 f ( 0 ) = f ( 1 ) + 2 f ( 2 ) 3f(0)=f(1)+2f(2) 3f(0)=f(1)+2f(2),证明: ∃ ξ ∈ ( 0 , 2 ) , f ′ ( ξ ) = 0 \exists\xi\in(0,2),f&#x27;(\xi)=0 ξ(0,2),f(ξ)=0
证明:
∵ f ( x ) \because f(x) f(x) [ 1 , 2 ] [1,2] [1,2]上连续
∴ m ≤ f ( x ) ≤ M \therefore m\leq f(x)\leq M mf(x)M
∴ m ≤ f ( 1 ) ≤ M , m ≤ f ( 2 ) ≤ M \therefore m\leq f(1)\leq M,m\leq f(2)\leq M mf(1)M,mf(2)M
∴ 3 m ≤ f ( 1 ) + 2 f ( 2 ) ≤ 3 M \therefore 3m\leq f(1)+2f(2)\leq 3M 3mf(1)+2f(2)3M
∴ ∃ η ∈ [ 1 , 2 ] \therefore \exists\eta\in[1,2] η[1,2],有 f ( η ) = f ( 0 ) + 2 f ( 2 ) 3 = f ( 0 ) f(\eta)=\displaystyle{{f(0)+2f(2)}\over{3}}=f(0) f(η)=3f(0)+2f(2)=f(0)
由罗尔定理可得, ∃ ξ ∈ ( 0 , 2 ) \exists\xi\in(0,2) ξ(0,2),有 f ′ ( ξ ) = 0 f&#x27;(\xi)=0 f(ξ)=0

(2)涉及 f ′ ( x ) f&#x27;(x) f(x)的问题
1、罗尔定理
难点:如何构造辅助函数;如何验证两端点值相等
(构造辅助函数的方法)求导公式逆用法
f ′ ( ξ ) + g ( ξ ) f ( ξ ) = 0 f&#x27;(\xi)+g(\xi)f(\xi)=0 f(ξ)+g(ξ)f(ξ)=0
⇒ f ′ ( x ) + g ( x ) f ( x ) = 0 \Rightarrow f&#x27;(x)+g(x)f(x)=0 f(x)+g(x)f(x)=0
⇒ e ∫ g ( x ) d x [ f ′ ( x ) + g ( x ) f ( x ) ] = 0 \Rightarrow e^{\int{g(x)}{\rm d}x}[f&#x27;(x)+g(x)f(x)]=0 eg(x)dx[f(x)+g(x)f(x)]=0
⇒ 原 函 数 F ( x ) = f ( x ) e ∫ g ( x ) d x \Rightarrow 原函数F(x)=f(x)e^{\int{g(x)}{\rm d}x} F(x)=f(x)eg(x)dx

A、 f ′ ′ ( ξ ) + g ( ξ ) f ′ ( ξ ) = 0 ⇒ F ( x ) = f ′ ( x ) e ∫ g ( x ) d x f&#x27;&#x27;(\xi)+g(\xi)f&#x27;(\xi)=0\Rightarrow F(x)=f&#x27;(x)e^{\int{g(x)}{\rm d}x} f(ξ)+g(ξ)f(ξ)=0F(x)=f(x)eg(x)dx
B、 f ( x ) + g ( x ) ∫ 0 x f ( t ) d t = 0 ⇒ F ( x ) = e ∫ g ( x ) d x ∫ 0 x f ( t ) d t f(x)+g(x)\int^x_0{f(t)}{\rm d}t=0\Rightarrow F(x)=e^{\int{g(x)}{\rm d}x}\int^x_0{f(t)}{\rm d}t f(x)+g(x)0xf(t)dt=0F(x)=eg(x)dx0xf(t)dt
C、 f ′ ( x ) + g ( x ) [ f ( x ) − 1 ] = 0 ⇒ F ( x ) = [ f ( x ) − 1 ] e ∫ g ( x ) d x f&#x27;(x)+g(x)[f(x)-1]=0\Rightarrow F(x)=[f(x)-1]e^{\int{g(x)}{\rm d}x} f(x)+g(x)[f(x)1]=0F(x)=[f(x)1]eg(x)dx

例2:设函数 f ( x ) f(x) f(x) [ 2 , 4 ] [2,4] [2,4]上连续,在 ( 2 , 4 ) (2,4) (2,4)上可导,且 f ( 2 ) = ∫ 3 4 ( x − 1 ) 2 f ( x ) d x f(2)=\int^4_3{(x-1)^2f(x)}{\rm d}x f(2)=34(x1)2f(x)dx,证明: ∃ ξ ∈ ( 2 , 4 ) \exists\xi\in(2,4) ξ(2,4),使得 f ′ ( ξ ) = 2 f ( ξ ) 1 − ξ f&#x27;(\xi)=\displaystyle{{2f(\xi)}\over{1-\xi}} f(ξ)=1ξ2f(ξ)
证明:
F ( x ) = ( 1 − x ) 2 f ( x ) F(x)=(1-x)^2f(x) F(x)=(1x)2f(x),易知 f ( 2 ) = F ( 2 ) f(2)=F(2) f(2)=F(2)
由题可得, f ( 2 ) = ∫ 3 4 ( x − 1 ) 2 f ( x ) d x = ∫ 3 4 F ( x ) d x = F ( 2 ) f(2)=\int^4_3{(x-1)^2f(x)}{\rm d}x=\int^4_3{F(x)}{\rm d}x=F(2) f(2)=34(x1)2f(x)dx=34F(x)dx=F(2)
由积分中值定理可得,存在 η ∈ ( 3 , 4 ) \eta\in(3,4) η(3,4),使得 F ( η ) = F ( 2 ) F(\eta)=F(2) F(η)=F(2)
∴ ∃ ξ ∈ ( 2 , η ) \therefore\exists\xi\in(2,\eta) ξ(2,η),使得 F ′ ( ξ ) = 0 F&#x27;(\xi)=0 F(ξ)=0
f ′ ( ξ ) = 2 f ( ξ ) 1 − ξ f&#x27;(\xi)=\displaystyle{{2f(\xi)}\over{1-\xi}} f(ξ)=1ξ2f(ξ)

2、多次使用罗尔定理
难点:找到三个互不相同且函数值相等的点
(构造辅助函数的方法)积分还原法
将欲证结论中的变量改为 x x x ⇒ \Rightarrow 积分,令 c = 0 c=0 c=0 ⇒ \Rightarrow 移项,使等式一端为0,另一端即为辅助函数

例3:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)上可导, f ′ ′ ( x ) ≠ 0 , f ( a ) = f ( b ) = 0 f&#x27;&#x27;(x)\neq 0,f(a)=f(b)=0 f(x)̸=0,f(a)=f(b)=0,证明: ∀ x ∈ ( a , b ) \forall x\in(a,b) x(a,b),有 f ( x ) ≠ 0 f(x)\neq 0 f(x)̸=0
证明:
假设 ∃ x 0 ∈ ( a , b ) \exists x_0\in(a,b) x0(a,b),有 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0
∵ f ( a ) = f ( x 0 ) , ∴ ∃ ξ 1 ∈ ( a , x 0 ) \because f(a)=f(x_0),\therefore\exists\xi_1\in(a,x_0) f(a)=f(x0),ξ1(a,x0),使得 f ′ ( ξ 1 ) = 0 f&#x27;(\xi_1)=0 f(ξ1)=0
∵ f ( b ) = f ( x 0 ) , ∴ ∃ ξ 2 ∈ ( x 0 , b ) \because f(b)=f(x_0),\therefore\exists\xi_2\in(x_0,b) f(b)=f(x0),ξ2(x0,b),使得 f ′ ( ξ 2 ) = 0 f&#x27;(\xi_2)=0 f(ξ2)=0
同理可得 ∃ ξ ∈ ( ξ 1 , ξ 2 ) \exists\xi\in(\xi_1,\xi_2) ξ(ξ1,ξ2),使得 f ′ ′ ( ξ ) = 0 f&#x27;&#x27;(\xi)=0 f(ξ)=0,与题目条件矛盾,所以假设不成立
命题得证

3、拉氏定理的应用
A、给出高阶条件证明低阶不等式
例4:设 f ′ ′ ( x ) &lt; 0 , f ( 0 ) = 0 f&#x27;&#x27;(x)&lt;0,f(0)=0 f(x)<0,f(0)=0,证明: ∀ x 1 、 x 2 &gt; 0 , 有 f ( x 1 + x 2 ) &lt; f ( x 1 ) + f ( x 2 ) \forall x_1、x_2&gt;0,有f(x_1+x_2)&lt;f(x_1)+f(x_2) x1x2>0f(x1+x2)<f(x1)+f(x2)
证明:设 0 &lt; x 1 &lt; x 2 &lt; x 1 + x 2 0&lt;x_1&lt;x_2&lt;x_1+x_2 0<x1<x2<x1+x2
由拉格朗日中值定理可得,
∃ ξ 1 ∈ ( x 2 , x 1 + x 2 ) \exists\xi_1\in(x_2,x_1+x_2) ξ1(x2,x1+x2),使得 f ( x 1 + x 2 ) = f ( x 2 ) + x 1 f ′ ( ξ 1 ) f(x_1+x_2)=f(x_2)+x_1f&#x27;(\xi_1) f(x1+x2)=f(x2)+x1f(ξ1)
∃ ξ 2 ∈ ( 0 , x 1 ) \exists\xi_2\in(0,x_1) ξ2(0,x1),使得 f ( x 1 ) = x 1 f ′ ( ξ 2 ) f(x_1)=x_1f&#x27;(\xi_2) f(x1)=x1f(ξ2)
∵ ξ 1 &gt; ξ 2 , f ′ ′ ( x ) &lt; 0 \because \xi_1&gt;\xi_2,f&#x27;&#x27;(x)&lt;0 ξ1>ξ2,f(x)<0
∴ f ′ ( ξ 1 ) &lt; f ′ ( x 2 ) \therefore f&#x27;(\xi_1)&lt;f&#x27;(x_2) f(ξ1)<f(x2)
∴ f ( x 1 + x 2 ) = f ( x 2 ) + x 1 f ( ξ 1 ) &lt; f ( x 2 ) + x 1 f ( ξ 2 ) = f ( x 2 ) + f ( x 1 ) \therefore f(x_1+x_2)=f(x_2)+x_1f(\xi_1)&lt;f(x_2)+x_1f(\xi_2)=f(x_2)+f(x_1) f(x1+x2)=f(x2)+x1f(ξ1)<f(x2)+x1f(ξ2)=f(x2)+f(x1)
f ( x 1 + x 2 ) &lt; f ( x 1 ) + f ( x 2 ) f(x_1+x_2)&lt;f(x_1)+f(x_2) f(x1+x2)<f(x1)+f(x2)

B、给出低阶条件证明高阶不等式
例5:设 f ( x ) f(x) f(x)三阶可导,且 f ( 2 ) &gt; f ( 1 ) , f ( 2 ) &gt; ∫ 2 3 f ( x ) d x f(2)&gt;f(1),f(2)&gt;\int^3_2{f(x)}{\rm d}x f(2)>f(1),f(2)>23f(x)dx,证明: ∃ ξ ∈ ( 1 , 3 ) \exists\xi\in(1,3) ξ(1,3),使得 f ′ ′ ( ξ ) &lt; 0 f&#x27;&#x27;(\xi)&lt;0 f(ξ)<0
证明:
由积分中值定理可得 ∃ η ∈ ( 2 , 3 ) , 使 得 ∫ 2 3 f ( x ) d x = f ( η ) \exists\eta\in(2,3),使得\int^3_2{f(x)}{\rm d}x=f(\eta) η(2,3),使23f(x)dx=f(η),则有
∃ ξ 1 ∈ ( 1 , 2 ) , f ( 2 ) − f ( 1 ) 2 − 1 = f ′ ( ξ 1 ) &gt; 0 \exists\xi_1\in(1,2),\displaystyle{{f(2)-f(1)}\over{2-1}}=f&#x27;(\xi_1)&gt;0 ξ1(1,2),21f(2)f(1)=f(ξ1)>0
∃ ξ 2 ∈ ( 2 , η ) , f ( η ) − f ( 2 ) η − 2 = f ′ ( ξ 2 ) &lt; 0 \exists\xi_2\in(2,\eta),\displaystyle{{f(\eta)-f(2)}\over{\eta-2}}=f&#x27;(\xi_2)&lt;0 ξ2(2,η),η2f(η)f(2)=f(ξ2)<0
∴ ∃ ξ ∈ ( ξ 1 , ξ 2 ) , 使 得 f ′ ′ ( ξ ) = 0 \therefore\exists\xi\in(\xi_1,\xi_2),使得f&#x27;&#x27;(\xi)=0 ξ(ξ1,ξ2),使f(ξ)=0

C、具体化 f ( x ) f(x) f(x),由 a &lt; ξ &lt; b a&lt;\xi&lt;b a<ξ<b推出相关不等式问题
例6:设 a &gt; b &gt; 0 a&gt;b&gt;0 a>b>0,证明 a − b a &lt; l n a b &lt; a − b b \displaystyle{{a-b}\over{a}}&lt;ln{{a}\over{b}}&lt;{{a-b}\over{b}} aab<lnba<bab
证明:
f ( x ) = l n x f(x)=lnx f(x)=lnx,由拉格朗日中值定理可得,
∃ ξ ( b , a ) , 有 l n a − l n b = ( a − b ) f ′ ( ξ ) = a − b ξ \exists\xi(b,a),有lna-lnb=(a-b)f&#x27;(\xi)=\displaystyle{{a-b}\over{\xi}} ξ(b,a),lnalnb=(ab)f(ξ)=ξab
∴ 1 a &lt; 1 ξ &lt; 1 b \therefore\displaystyle{{1}\over{a}}&lt;{{1}\over{\xi}}&lt;{{1}\over{b}} a1<ξ1<b1
⇒ a − b a &lt; a − b ξ &lt; a − b b \Rightarrow\displaystyle{{a-b}\over{a}}&lt;{{a-b}\over{\xi}}&lt;{{a-b}\over{b}} aab<ξab<bab
⇒ a − b a &lt; l n a b &lt; a − b b \Rightarrow\displaystyle{{a-b}\over{a}}&lt;ln{{a}\over{b}}&lt;{{a-b}\over{b}} aab<lnba<bab

D、将 f ( x ) f(x) f(x)复杂化 ⇒ \Rightarrow 等式证明

(4)柯西中值定理的应用
例7:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可导, f + ′ ( a ) f − ′ ( b ) &lt; 0 f&#x27;_+(a)f&#x27;_-(b)&lt;0 f+(a)f(b)<0,证明: ∃ ξ ∈ ( a , b ) , 使 得 f ′ ( ξ ) = 0 \exists\xi\in(a,b),使得f&#x27;(\xi)=0 ξ(a,b),使f(ξ)=0
证明:
不妨设 f + ′ ( a ) &gt; 0 , f − ′ ( b ) &lt; 0 f&#x27;_+(a)&gt;0,f&#x27;_-(b)&lt;0 f+(a)>0,f(b)<0,则
f + ′ ( a ) = lim ⁡ x → a + f ( x ) − f ( a ) x − a &gt; 0 f&#x27;_+(a)=\lim_{x\rightarrow a^+}{{f(x)-f(a)}\over{x-a}}&gt;0 f+(a)=limxa+xaf(x)f(a)>0,根据保号性原则, f ( x ) &gt; f ( a ) f(x)&gt;f(a) f(x)>f(a)
同理 f ( x ) &lt; f ( b ) f(x)&lt;f(b) f(x)<f(b),则 f ( x ) f(x) f(x)必在 ( a , b ) (a,b) (a,b)上取得最大值,且该点亦为极大值点
∴ ∃ ξ ∈ ( a , b ) \therefore\exists\xi\in(a,b) ξ(a,b),使得 f ′ ( ξ ) = 0 f&#x27;(\xi)=0 f(ξ)=0

(5)高阶导数的证明
1、证明 ξ \xi ξ f n − 1 ( x ) f^{n-1}(x) fn1(x)的极值点(费马定理)
2、 f n − 1 ( x ) = 0 f^{n-1}(x)=0 fn1(x)=0的根的求解(罗尔定理)
3、泰勒展式 n ≥ 2 n\geq 2 n2

例8:设 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]内三阶可导,且 f ( 0 ) = f ( 1 ) = 0 f(0)=f(1)=0 f(0)=f(1)=0,又 F ( x ) = x 3 f ( x ) F(x)=x^3f(x) F(x)=x3f(x),证明: ∃ ξ ∈ ( 0 , 1 ) , 使 得 F ′ ′ ′ ( ξ ) = 0 \exists\xi\in(0,1),使得F&#x27;&#x27;&#x27;(\xi)=0 ξ(0,1),使F(ξ)=0
证明:
F ( x ) = F ( 0 ) + F ′ ( 0 ) x + F ′ ′ ( 0 ) 2 ! x 2 + F ′ ′ ′ ( 0 ) 3 ! x 3 F(x)=F(0)+F&#x27;(0)x+\displaystyle{{F&#x27;&#x27;(0)}\over{2!}}x^2+{{F&#x27;&#x27;&#x27;(0)}\over{3!}}x^3 F(x)=F(0)+F(0)x+2!F(0)x2+3!F(0)x3
F ( 0 ) = 0 F(0)=0 F(0)=0
F ′ ( x ) = 3 x 2 f ( x ) + x 3 f ′ ( x ) , F ′ ( 0 ) = 0 F&#x27;(x)=3x^2f(x)+x^3f&#x27;(x),F&#x27;(0)=0 F(x)=3x2f(x)+x3f(x),F(0)=0
F ′ ′ ( x ) = 6 x f ( x ) + 3 x 2 f ′ ( x ) + 3 x 2 f ′ ( x ) + x 3 f ′ ′ ( x ) , F ′ ′ ( x ) = 0 F&#x27;&#x27;(x)=6xf(x)+3x^2f&#x27;(x)+3x^2f&#x27;(x)+x^3f&#x27;&#x27;(x),F&#x27;&#x27;(x)=0 F(x)=6xf(x)+3x2f(x)+3x2f(x)+x3f(x),F(x)=0
∴ F ( x ) = F ′ ′ ′ ( ξ ) 6 x 3 \therefore F(x)=\displaystyle{{F&#x27;&#x27;&#x27;(\xi)}\over{6}}x^3 F(x)=6F(ξ)x3
F ( 1 ) = F ′ ′ ′ ( ξ ) 6 = f ( 1 ) = 0 F(1)=\displaystyle{{F&#x27;&#x27;&#x27;(\xi)}\over{6}}=f(1)=0 F(1)=6F(ξ)=f(1)=0
解得 F ′ ′ ′ ( ξ ) = 0 F&#x27;&#x27;&#x27;(\xi)=0 F(ξ)=0

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值