题目大意:
天上掉馅饼了,告诉你第t秒时会在哪些位置掉落馅饼,每一秒你可以移动一格,如果你的初始位置是5,馅饼掉落范围是[0,10],你只能收集你所在的位置或者是你左右位置的馅饼,问最大收集的馅饼的数量是多少。
题目分析:
我们反向考虑从[0,10]之内的某个位置在最后一秒开始收集,让时间倒流,最后当时间为0你在初始位置5时的最大数目,跟题目是等价的。
自下向上收集我们自然的想到数塔,因此我们建立二位数组dp[t][pos],表示在第t秒时在pos位置能够收集到的最大的馅饼数量。
那么我们从最后一秒倒着向上dp,也就实现了时间的倒流。最后的答案也就是dp[0][5];
如果我们初始化dp[t][pos]是第t秒pos位置的馅饼数量,那么我们有状态转移方程:
dp[t][pos] += max(dp[t + 1][pos], dp[t + 1][pos -1], dp[t + 1][pos+ 1])(当然0于10这两个位置需要特殊处理);
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 10 + 5;
const int maxx = 100000 + 10;
int dp[maxx][maxn];
int main()
{
int n, s, t;
while(~scanf("%d", &n))
{
if(n == 0)
break;
int len = -100;
memset(dp, 0, sizeof(dp));
for(int i = 0; i < n; i++)
{
scanf("%d%d", &s, &t);
dp[t][s]++;
len = max(len, t);
}
for(int i = len - 1; i >= 0; i--)
{
dp[i][0] += max(dp[i + 1][0], dp[i + 1][1]);
dp[i][10] += max(dp[i + 1][10], dp[i + 1][9]);
for(int pos = 1; pos <= 9; pos++)
dp[i][pos] += max(dp[i + 1][pos], max(dp[i + 1][pos - 1], dp[i + 1][pos + 1]));
}
cout << dp[0][5] << endl;
}
return 0;
}