素数(埃式筛法、线性筛法)

 


 
 

  

素数判断方法

最简单的就是从 2 ~ n-1 都去与 n 取余,看是否能整除。

bool prime(int n){
	for(int i = 2; i < n; i ++)
		if(n % i == 0)
			return true;
	return false;
}

思考一下:其实没有必要枚举所有的比 n 小的数,n % i == 0,那么必定有一个 j 使得 i * j = n。所以只需要枚举 i * i ≤ n 的 i 就可以了。

bool prime(int n){
	for(int i = 2; i * i <= n; i ++)
		if(n % i == 0)
			return true;
	return false;
}

 
 

 
 

 
 

埃式筛法

如果需要对许多整数进行素数判断,上面得方法时间复杂度就较高了,这就需要更高效的算法,如埃式筛法。

一个数如果是素数,那么它的倍数就一定是合数,这就筛去了它的所有倍数。

操作:将 2 ~ n-1 个整数列出来,从 2 开始把它的倍数都筛去,然后将 3 的倍数筛去……遍历所有的素数,把它的倍数都筛去。
我们设置一个标记数组,依次遍历过去(同时标记它的倍数),若 i 没有被标记就代表 i 不会被 2 ~ i-1 的任何一个整数整除,就说明它是素数。

埃式筛法图示

bool flag[maxx];
int prime[maxx], p;//记录素数 
void primes(int n){
	flag[1] = true;
	for(int i = 2; i <= n; i ++){
		if(!flag[i]){//找到一个素数 
			prime[p ++] = i;//记录素数 
		}
		for(int j = 0; prime[j] * i <= n; j ++)//遍历素数数组,将全部素数的i倍进行标记 
			flag[prime[j] * i] = true;
	}
}

时间复杂度:O(n * log log n)
n = 12的埃式筛法流程

iprime本轮筛去的整数
224
32、36、9
42、38、12
52、3、510
62、3、512
72、3、5、7
82、3、5、7
92、3、5、7
102、3、5、7
112、3、5、7、11
122、3、5、7、11

 
 

 
 

 
 

线性筛法

仔细思考一下:埃式筛法也有冗余,同一个合数有可能会被两个素数筛。例如,12:12 % 2 = 0、12 % 3 = 0,那么 12 就被 2、3 都筛了一次,这样就导致了重复。

线性筛法保证每个合数只会被它的最小质因数筛去,因此每个数只会被标记一次,时间复杂度是O(n)。

bool flag[maxx];
int prime[maxx], p;//记录素数 
void primes(int n){
	flag[1] = true;
	for(int i = 2; i <= n; i ++){
		if(!flag[i]){//找到一个素数 
			prime[p ++] = i;//记录素数 
		}
		for(int j = 0; prime[j] * i <= n; j ++){
			flag[i * prime[j]] = true;
			if(i % prime[j] == 0)
				break;
		} 
	}
}

这与埃式筛法的区别就在于:

if(i % prime[j] == 0)
  break;

这样就保证了同一个合数,只会被他最小的质因子筛去。
证明: 如果 i % prime[j] = 0,记 k = i / prime[j],则 i * prime[j + 1] = k * prime[j] * prime[j + 1],而 prime[j] < prime[j + 1],则代表 prime[j + 1] 不是 i * prime[j + 1] 的最小质因子。

我看一下上面举的例子:12

iprime本轮筛去的整数
224
32、36、9
42、38(4 % 2 = 0)
52、3、510
62、3、512(6 % 2 = 0)
72、3、5、7
82、3、5、7
92、3、5、7
102、3、5、7
112、3、5、7、11
122、3、5、7、11

 
 

 
 

 
 

区间筛法

问题:给定整数 a 和 b,请问区间 [a, b) 内有多少个素数?

思路:b 以内的合数的最小质因数一定不超过 sqrt(b)。如果有 sqrt(b) 以内的素数表的话,就可以把埃氏筛法运用在 [a, b) 上了。也就是说,先分别做好 [2, sqrt(b)) 的表和 [a, b) 的表,然后从 [2, sqrt(b)) 的表中筛得素数的同时,也将其倍数从 [a, b) 的表中划去,最后剩下的就是 [a, b) 内的素数了。

bool flag[maxx], flag_section[maxx];
int primes(int a, int b){
	flag[1] = true;
	for(int i = 2; i * i < b; i ++){
		if(!flag[i]){//找到一个素数  
			for(int j = 2 * i; j * j < b; j += i)//筛选[2, sqrt(b)) 
				flag[j] = true;
			for(int j = max(2, (a + i - 1) / i) * i; j < b; j += i)//(a+i-1)/i得到最接近a的i的倍数,最低是i的2倍,然后筛选
				flag_section[j - a] = true;
		}
	}
	int cnt = 0;
	for(int i = 0; i < b - a; i ++)
		if(!flag_section[i])
			cnt ++;
	return cnt;
}

 
 

 
 

 
 

质因数分解

基本定理:任何一个大于 1 的正整数都能唯一分解为有限个质数的乘积,可写作:
N = p 1 c 1 p 2 c 2 p 3 c 3 … p m c m N=p_{1}^{c_{1}}p_{2}^{c_{2}}p_{3}^{c_{3}}\ldots p_{m}^{c_{m}} N=p1c1p2c2p3c3pmcm其中 ci 都是正整数,pi 都是质数,且满足 p1<p2<……<pm

采用:试除法。
  结合质数判定的“试除法”和质数筛选的“埃式筛法”,我们可以扫描 2~⌊ √N ⌋ 的每个数 d,若 d 能整除 N,则从 N 中除掉所有的因子 d,同时累计除去的 d 的个数。
  因为一个合数的因子一定在扫描到这个合数之前就从 N 中被除掉了,所以在上述过程中能整除 N 的一定是质数。最终就得到了质因数分解的结果,易知时间复杂度为 O(√N)。
  特别地,若 N 没有被任何 2~√N 地数整除,则 N 是质数,无需分解。

void divide(int n){
	int m = 0;
	for(int i = 2; i <= sqrt(n); i ++)
		if(n % i == 0){//i是质数 
			p[++m] = i, c[m] = 0;
			while(n % i == 0)
				n /= i, c[m] ++;
		}
	if(n > 1)//n是质数 
		p[++m] = n, c[m] = 1;
	for(int i = 1; i <= m; i ++)
		printf("%d^%d\n", p[i], c[i]);
} 

 
 

 
 

 
 

例题

第一题

题目1题目2
题目链接

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 1000010;

int primes[N], cnt;
bool st[N];

void getPrimes(int n){
	memset(st, false, sizeof(st));
	cnt = 0;
	for(int i = 2; i <= n; i ++){
		if(!st[i])
			primes[cnt ++] = i;
		for(int j = 0; primes[j] * i <= n; j ++){
			st[primes[j] * i] = true;
			if(i % primes[j] == 0)
				break;
		}
	}
}

int main(){
	long long l, r;
	while(~scanf("%lld %lld", &l, &r)){
		getPrimes(50000);
		memset(st, false, sizeof(st));
		for(int i = 0; i < cnt; i ++){
			int p = primes[i];
			for(long long j = max((l + p - 1) / p * p, 2ll * p); j <= r; j += p)// 把[l, r]中所有p的倍数筛掉
				st[j - l] = true;
		}
		
		cnt = 0;
		for(int i = 0; i <= r - l; i ++)
			if(!st[i] && i + l > 1)
				primes[cnt ++] = i + l;
		
		if(cnt < 2)
			printf("There are no adjacent primes.\n");
		else{
			int minp = 0, maxp = 0;
			for(int i = 0; i + 1 < cnt; i ++){
				int d = primes[i + 1] - primes[i];
				if(d < primes[minp + 1] - primes[minp])
					minp = i;
				if(d > primes[maxp + 1] - primes[maxp])
					maxp = i;
			}
			printf("%d,%d are closest, %d,%d are most distant.\n", primes[minp], primes[minp + 1], primes[maxp], primes[maxp + 1]);
		}
	}
	return 0;
}

 
 

 
 

 
 

第二题

题目
题目链接

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 1000010;

int primes[N], cnt;
bool st[N];

void getPrimes(int n){
	memset(st, false, sizeof(st));
	cnt = 0;
	for(int i = 2; i <= n; i ++){
		if(!st[i])
			primes[cnt ++] = i;
		for(int j = 0; primes[j] * i <= n; j ++){
			st[primes[j] * i] = true;
			if(i % primes[j] == 0)
				break;
		}
	}
}

int main(){
	int n;
	scanf("%d", &n);
	getPrimes(n);
	
	for(int i = 0; i < cnt; i ++){
		int p = primes[i];
		int s = 0;
		for(int j = p; j <= n; j *= p){
			s += n / j;
			if(j > n / p)
				break;
		}
		printf("%d %d\n", p, s);
	}
	return 0;
}

 
 

 
 

 
 

第三题

题目
题目链接

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 1000010;

int primes[N], cnt;
bool st[N];

void getPrimes(int n){
	memset(st, false, sizeof(st));
	cnt = 0;
	for(int i = 2; i <= n; i ++){
		if(!st[i])
			primes[cnt ++] = i;
		for(int j = 0; primes[j] * i <= n; j ++){
			st[primes[j] * i] = true;
			if(i % primes[j] == 0)
				break;
		}
	}
}

int main()
{
  // 请在此输入您的代码
  getPrimes(2019);
  long long dp[2020] = {1};
  for(int i = 0; i < cnt; i ++)
    for(int j = 2019; j >= primes[i]; j --)
      dp[j] += dp[j - primes[i]];
  printf("%lld", dp[2019]);
  return 0;
}
  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值