ALGO-46 Hanoi问题
资源限制
时间限制:1.0s 内存限制:512.0MB
问题描述
如果将课本上的Hanoi塔问题稍做修改:仍然是给定N只盘子,3根柱子,但是允许每次最多移动相邻的M只盘子(当然移动盘子的数目也可以小于M),最少需要多少次?
例如N=5,M=2时,可以分别将最小的2个盘子、中间的2个盘子以及最大的一个盘子分别看作一个整体,这样可以转变为N=3,M=1的情况,共需要移动7次。
输入格式
输入数据仅有一行,包括两个数N和M(0<=M<=N<=8)
输出格式
仅输出一个数,表示需要移动的最少次数
测试样例
输入:
5
2
输出:
7
AC code:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt(), M = sc.nextInt();
System.out.print(pow2(N % M + N / M) - 1);
}
static int pow2(int n) {
if (n == 0) return 1;
if ((n & 1) == 1) return 2 * square(pow2(n / 2));
return square(pow2(n / 2));
}
static int square(int n) { return n * n; }
}
试了几个刷题网站,寝室的网只能打开洛谷
再加上蓝桥前面的题真是过于简单
转战了