第十二届蓝桥杯 2021年省赛真题 (Java 大学C组) 第一场


Placeholder


#A ASC

本题总分:5 分


问题描述

  已知大写字母 A A A A S C I I ASCII ASCII 码为 65 65 65,请问大写字母 L L L A S C I I ASCII ASCII 码是多少?


答案提交

  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。


76

calcCode:

public class Test {

    public static void main(String[] args) { new Test().run(); }

    void run() {
        // System.out.println(65 + 'L' - 'A');
        System.out.println((int)'L');
    }
}

?这是什么新型攻击性言论


#B 空间

本题总分:5 分


问题描述

  小蓝准备用 256 M B 256\mathrm{MB} 256MB 的内存空间开一个数组,数组的每个元素都是 32 32 32 位二进制整数,如果不考虑程序占用的空间和维护内存需要的辅助空间,请问 256 M B 256\mathrm{MB} 256MB 的空间可以存储多少个 32 32 32 位二进制整数?


答案提交

  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。


67108864

calcCode:

public class Test {

    public static void main(String[] args) { new Test().run(); }

    void run() {
        System.out.print(256 >> 2 << 20);
    }
}

  结果填空双签到了属于是。

   M B \mathrm{MB} MB 全称 兆字节 ( M e g a   B y t e s ) (\mathrm{Mega\ Bytes}) (Mega Bytes)

  而 1   B y t e = 8   b i t s 1\ \mathrm{Byte} = 8\ \mathrm{bits} 1 Byte=8 bits,也就是一个 32 32 32 位整形占用 4   B y t e 4\ \mathrm{Byte} 4 Byte

  同时 1   M B = 2 10   K B = 2 20   B 1\ \mathrm{MB} = 2^{10}\ \mathrm{KB} = 2^{20}\ \mathrm{B} 1 MB=210 KB=220 B

  将 256 256 256 4 4 4 再乘以 2 20 2^{20} 220 就行了。


#C 卡片

本题总分:10 分


问题描述

  小蓝有很多数字卡片,每张卡片上都是数字 0 0 0 9 9 9
  小蓝准备用这些卡片来拼一些数,他想从 1 1 1 开始拼出正整数,每拼一个,就保存起来,卡片就不能用来拼其它数了。
  小蓝想知道自己能从 1 1 1 拼到多少。
  例如,当小蓝有 30 30 30 张卡片,其中 0 0 0 9 9 9 3 3 3 张,则小蓝可以拼出 1 1 1 10 10 10,但是拼 11 11 11 时卡片 1 1 1 已经只有一张了,不够拼出 11 11 11
  现在小蓝手里有 0 0 0 9 9 9 的卡片各 2021 2021 2021 张,共 20210 20210 20210 张,请问小蓝可以从 1 1 1 拼到多少?
  提示:建议使用计算机编程解决问题。


答案提交

  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。


3181


朴素解法


public class Test {

    public static void main(String[] args) { new Test().run(); }

    void run() { System.out.println(calc(2021)); }

    int calc(int upper) {
        int[] count = new int[10];
        for (int n = 1, k = 1; ; k = ++n)
            do
                if (++count[k % 10] > upper)
                	return n - 1;
            while ((k /= 10) > 0);
    }
}

  没什么好说的。


弯道超车


  观察 [ 1 , 9 ] [1,9] [1,9] 这个区间中, [ 0 , 9 ] [0,9] [0,9] 的出现情况。

  在 [ 1 , 9 ] [1,9] [1,9] 中, 1 1 1 9 9 9 各出现 1 1 1 次。

  把观察的范围扩大到 [ 1 , 99 ] [1,99] [1,99],十位的 1 1 1 出现 [ 10 , 19 ] [10,19] [10,19] 10 10 10 次,十位的 2 2 2 出现 [ 20 , 29 ] [20,29] [20,29] 10 10 10 次, ⋯ \cdots ,十位的 9 9 9 出现 [ 90 , 99 ] [90,99] [90,99] 10 10 10 次,低位 [ 0 , 9 ] [0,9] [0,9] 重复出现 10 10 10 次, 1 1 1 9 9 9 各出现 20 20 20 次, 0 0 0 出现 9 9 9 次。

  将这个观察范围继续扩大,会发现 1 1 1 的使用次数总是不小于 0 0 0 2 2 2 9 9 9,也就是说统计 0 0 0 2 2 2 9 9 9 是没有意义的。

public class Test {

    public static void main(String[] args) { new Test().run(); }

    void run() { System.out.println(calc(20)); }

    int calc(int upper) {
        int count = 0;
        for (int n = 1, k = 1; ; k = ++n) {
            do
                if (k % 10 == 1) count++;
            while ((k /= 10) > 0);
            if (count > upper) return n - 1;
        }
    }
}

#D 相乘

本题总分:10 分


问题描述

  小蓝发现,他将 1 1 1 1000000007 1000000007 1000000007 之间的不同的数与 2021 2021 2021 相乘后再求除以 1000000007 1000000007 1000000007 的余数,会得到不同的数。
  小蓝想知道,能不能在 1 1 1 1000000007 1000000007 1000000007 之间找到一个数,与 2021 2021 2021 相乘后再除以 1000000007 1000000007 1000000007 后的余数为 999999999 999999999 999999999。如果存在,请在答案中提交这个数;
  如果不存在,请在答案中提交 0 0 0


答案提交

  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。


17812964


朴素解法


  朴素的去枚举 [ 1 , 1000000007 ] [1,1000000007] [1,1000000007] 中的每一个数,看似不明智,但实际上,

  对于现代的 C P U \mathrm{CPU} CPU 来说,就是洒洒水。

  就算你的 C P U \mathrm{CPU} CPU 主频低至 2.0 G h z 2.0\mathrm{Ghz} 2.0Ghz,那也是每秒钟二十亿次的计算速度。

  不要小瞧了现代计算机啊,混蛋。

public class Test {

    public static void main(String[] args) { new Test().run(); }

    int N = 1000000007, M = 999999999;

    void run() {
        for (int i = 1; i <= N; i++)
            if (i * 2021L % N == M) System.out.println(i);
    }
}

余数定义


  余数的定义是,

  给定两个整数 a a a b b b,其中 b ≠ 0 b \ne 0 b=0,那么一定存在两个唯一的整数 q q q r r r,使得 a = q b + r , 0 ≤ r < ∣ b ∣ a=qb+r,0 \leq r < |b| a=qb+r0r<b

  而在这道题中,我们最后要找的,可能存在的这个数字可表示为,

   2021 ⋅ a ′ = 1000000007 ⋅ q + 999999999 2021 \cdot a' = 1000000007 \cdot q + 999999999 2021a=1000000007q+999999999

  显然 q q q 不会超过 2021 2021 2021

  这样我们就能大大的减少枚举范围。

public class Test {

    public static void main(String[] args) { new Test().run(); }

    long N = 1000000007, M = 999999999;

    void run() {
        for (int i = 1; i < 2021; i++)
            if ((i * N + M) % 2021 == 0)
                System.out.println((i * N + M) / 2021);
    }
}

扩展欧几里得算法


  有丶超纲。

  依题意,有同余线性方程:

   a × x ≡ b ( m o d n ) a × x \equiv b \pmod{n} a×xb(modn) gcd ⁡ ( a , n ) ∣ b \gcd(a,n) \mid b gcd(a,n)b

  将 2021 2021 2021 代入 a a a 1000000007 1000000007 1000000007 代入 n n n gcd ⁡ ( a , n ) = 1 \gcd(a,n)=1 gcd(a,n)=1,方程有无穷解。


  稍微解释一下,

   a × x ≡ b ( m o d n ) a × x \equiv b \pmod{n} a×xb(modn) 可改写为 a × x + n × y = b a × x + n × y = b a×x+n×y=b

  用扩展欧几里得算法求出一组数 x 0 , y 0 x_{0}, y_{0} x0,y0,使得 a × x 0 + n × y 0 = gcd ⁡ ( a , n ) a × x_{0} + n × y_{0} = \gcd(a,n) a×x0+n×y0=gcd(a,n)

  则 x = b × x 0 gcd ⁡ ( a , n ) x = \cfrac{b × x_{0}}{\gcd(a,n)} x=gcd(a,n)b×x0 是原方程的一个解。

  通解为 b × x 0 gcd ⁡ ( a , n )   m o d   n ‾ ( m o d n ) \overline{\cfrac{b × x_{0}}{\gcd(a,n)} \bmod n} \pmod{n} gcd(a,n)b×x0modn(modn)

  人话一点就是模 n n n x x x 同余的同余类。

def exgcd(a, b):
    if b == 0:
        return (1, 0, a)
    (x, y, d) = exgcd(b, a % b)
    return (y, x - a // b * y, d);

(x, y, d) = exgcd(2021, 1000000007)
print((x * 999999999 // d) % (1000000007 // d))

  毕竟是结果填空题,

  就用 P y t h o n \mathrm{Python} Python 写了,

  虽然不喜欢这门语言,但在解决这类问题上,

   P y t h o n \mathrm{Python} Python 的综合效率还是要高点。


#E 路径

本题总分:15 分


问题描述

  小蓝学习了最短路径之后特别高兴,他定义了一个特别的图,希望找到图中的最短路径。
  小蓝的图由 2021 2021 2021 个结点组成,依次编号 1 1 1 2021 2021 2021。对于两个不同的结点 a , b a, b a,b,如果 a a a b b b 的差的绝对值大于 21 21 21,则两个结点之间没有边相连;如果 a a a b b b 的差的绝对值小于等于 21 21 21,则两个点之间有一条长度为 a a a b b b 的最小公倍数的无向边相连。
  例如:结点 1 1 1 和结点 23 23 23 之间没有边相连;结点 3 3 3 和结点 24 24 24 之间有一条无向边,长度为 24 24 24;结点 15 15 15 和结点 25 25 25 之间有一条无向边,长度为 75 75 75
  请计算,结点 1 1 1 和结点 2021 2021 2021 之间的最短路径长度是多少。
  提示:建议使用计算机编程解决问题。


答案提交

  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。


10266837


  题目已经说的够清楚了,

  建一个有 2021 2021 2021 个顶点 21 × 2000 + 21 ( 21 + 1 ) 2 21 × 2000 + \cfrac{21(21 + 1)}{2} 21×2000+221(21+1) 条边的无向图,跑图上的算法就完事了。

  还有的细节就是整形是否会溢出,我们取 ( 1 , 2021 ] (1,2021] (1,2021] 中最大的质数 2017 2017 2017 202 1 2 2021^2 20212 相乘,得到的结果还是有点夸张的,虽然经过测试,可能的线路权值合至多不会超过 2 31 − 1 2^{31} - 1 2311,但毕竟是面向竞赛,考虑甄别的时间成本,直接使用长整形更为划算。


搜索


深度优先搜索


   2021 2021 2021 个顶点,绝大多数顶点都连有 2 × 21 2 × 21 2×21 条边,

  别深搜了,一搜就是

  compilaition completed successfully in 500ms(4 hour ago)

  就,电脑跟选手对着坐牢。


记忆化搜索


  深度优先搜索,在搜索最优结果时,通常需要完整的枚举全部可能的问题状态。

  但在这个问题状态的集合中,所有可选方案的 “后缀” 都是相同,也就是所有可选的分支,它们都是以同一个节点结尾。

  如果我们将已经搜索到的节点到目标节点间的最短路径保存下来,在再次搜索到这个 “后缀” 的分支时直接返回。

  那么问题就可能在一个较短的时间内解决。

  这也是所谓的记忆化搜索。

import java.util.ArrayList;
import java.util.List;

public class Test {

    public static void main(String[] args) { new Test().run(); }

    int N = 2021;

    int[] weight = new int[N + 1];

    List<Edge>[] graph = new List[N + 1];

    boolean[] visited = new boolean[N + 1];

    void run() {
        for (int i = 1; i <= N; i++)
            graph[i] = new ArrayList();
        for (int v = 1; v <  N; v++)
            for (int w = v + 1; w <= min(v + 21, N);  w++) {
                graph[v].add(new Edge(w, lcm(v, w)));
                graph[w].add(new Edge(v, lcm(v, w)));
            }
        visited[1] = true;
        System.out.println(dfs(1));
    }

    int dfs(int v) {
        if (v == N) return 0;
        if (weight[v] != 0) return weight[v];
        int min = 0x7FFFFFFF;
        for (Edge edge : graph[v]) {
            if (visited[edge.w]) continue;
            visited[edge.w] = true;
            min = min(min, dfs(edge.w) + edge.weight);
            visited[edge.w] = false;
        }
        return weight[v] = min;
    }

    int min(int a, int b) { return a < b ? a : b; }

    int lcm(int a, int b) { return a * b / gcd(a, b); }

    int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }

    class Edge {

        int w, weight;

        Edge(int w, int weight) {
            this.weight = weight;
            this.w = w;
        }
    }
}

枝剪广搜


  其实朴素的去搜索,不论深搜还是广搜,在竞赛里都是很冒进的行为,

  影响这两个算法执行效率的因素太多。

  当然要是没有其他的思路,也只能死马当活马医了。

  幸运的是,只需简单的枝剪,就能在很短的时间计算出结果

import java.util.PriorityQueue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Queue;
import java.util.List;

public class Test {

    public static void main(String[] args) { new Test().run(); }

    int N = 2021;
    
    void run() {
        List<Edge>[] graph = new List[N + 1];
        long[] visited = new long[N + 1];
        for (int i = 1; i <= N; i++)
            graph[i] = new ArrayList();
        for (int v = 1; v <  N; v++)
            for (int w = v + 1; w <= min(v + 21, N);  w++) {
                graph[v].add(new Edge(w, lcm(v, w)));
                graph[w].add(new Edge(v, lcm(v, w)));
            }
        Queue<Vertex> queue = new PriorityQueue();
        Arrays.fill(visited, Long.MAX_VALUE);
        queue.offer(new Vertex(1, 0));
        Vertex V = null;
        while (queue.size() > 0) {
            V = queue.poll();
            if (V.v == N) break;
            if (V.weight >= visited[V.v]) continue;
            visited[V.v] = V.weight;
            for (Edge edge : graph[V.v])
                queue.offer(new Vertex(edge.w, edge.weight + V.weight));
        }
        System.out.println(V.weight);
    }

    int min(int a, int b) { return a < b ? a : b; }

    int lcm(int a, int b) { return a * b / gcd(a, b); }

    int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }

    class Edge {

        int w, weight;

        Edge(int w, int weight) {
            this.weight = weight;
            this.w = w;
        }
    }

    class Vertex implements Comparable<Vertex> {

        int v;
        long weight;

        Vertex(int v, long weight) {
            this.weight = weight;
            this.v = v;
        }

        @Override
        public int compareTo(Vertex V) { return Long.compare(this.weight, V.weight); }
    }
}

双向搜索


  很容易就能发现,越是编号大的节点,连接着它的边的权重可能越大。

  也就是在最短路径的这条分支中,越是靠近目标节点,就越可能进入无效的分支。

  通常,在这个数据规模下,不带策略的去广搜是致命的。

  一种常见的优化方法是从源点和终点双向开始搜索,当两条分支相遇时,即视为找到了最短路径。

  由于这种问题可选择的解法有很多,这里便不做展开。

import java.util.PriorityQueue;
import java.util.ArrayList;
import java.util.Queue;
import java.util.List;

public class Test {

    public static void main(String[] args) { new Test().run(); }

    int N = 2021;

    void run() {
        List<Edge>[] graph = new List[N + 1];
        long[] visited0 = new long[N + 1];
        long[] visited1 = new long[N + 1];
        for (int i = 1; i <= N; i++) {
            graph[i] = new ArrayList();
            visited0[i] = visited1[i] = Long.MAX_VALUE;
        }
        for (int v = 1; v <  N; v++)
            for (int w = v + 1; w <= min(v + 21, N);  w++) {
                graph[v].add(new Edge(w, lcm(v, w)));
                graph[w].add(new Edge(v, lcm(v, w)));
            }
        Queue<Vertex> queue = new PriorityQueue();
        queue.offer(new Vertex(N, 0, false));
        queue.offer(new Vertex(1, 0));
        Vertex V = null;
        while (true) {
            V = queue.poll();
            if (V.fromHead) {
                if (visited1[V.v] != Long.MAX_VALUE) break;
                if (V.weight >= visited0[V.v]) continue;
                visited0[V.v] = V.weight;
            } else {
                if (visited0[V.v] != Long.MAX_VALUE) break;
                if (V.weight >= visited1[V.v]) continue;
                visited1[V.v] = V.weight;
            }
            for (Edge edge : graph[V.v])
                queue.add(new Vertex(edge.w, edge.weight + V.weight, V.fromHead));
        }
        System.out.println(V.weight + (V.fromHead ? visited1[V.v] : visited0[V.v]));
    }

    int min(int a, int b) { return a < b ? a : b; }

    int lcm(int a, int b) { return a * b / gcd(a, b); }

    int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }

    class Edge {

        int w, weight;

        Edge(int w, int weight) {
            this.weight = weight;
            this.w = w;
        }
    }

    class Vertex implements Comparable<Vertex> {

        int v;
        long weight;
        boolean fromHead;

        Vertex(int v, long weight) { this(v, weight, true); }

        Vertex(int v, long weight, boolean fromHead) {
            this.fromHead = fromHead;
            this.weight = weight;
            this.v = v;
        }

        @Override
        public int compareTo(Vertex V) { return Long.compare(this.weight, V.weight); }
    }
}

单源最短路径


Dijkstra


  题目给出的图显然是个边加权,权重非负的无向图,跑遍 D i j k s t r a Dijkstra Dijkstra 就完事了。

import java.util.PriorityQueue;
import java.util.ArrayList;
import java.util.Queue;
import java.util.List;

public class Test {

    public static void main(String[] args) { new Test().run(); }

    int N = 2021;

    void run() {
        boolean[] marked = new boolean[N + 1];
        List<Edge>[] graph = new List[N + 1];
        long[] distTo = new long[N + 1];
        for (int i = 1; i <= N; i++) {
            graph[i] = new ArrayList();
            distTo[i] = Long.MAX_VALUE;
        }
        for (int v = 1; v <  N; v++)
            for (int w = v + 1; w <= min(v + 21, N);  w++) {
                graph[v].add(new Edge(w, lcm(v, w)));
                graph[w].add(new Edge(v, lcm(v, w)));
            }
        Queue<Vertex> queue = new PriorityQueue();
        queue.offer(new Vertex(1, distTo[1] = 0));
        while (queue.size() > 0) {
            Vertex V = queue.poll();
            if (marked[V.v])
                    continue;
            marked[V.v] = true;
            for (Edge edge : graph[V.v])
                if (distTo[edge.w] > distTo[V.v] + edge.weight)
                    queue.offer(new Vertex(edge.w, distTo[edge.w] = distTo[V.v] + edge.weight));
        }
        System.out.println(distTo[N]);
    }

    int min(int a, int b) { return a < b ? a : b; }

    int lcm(int a, int b) { return a * b / gcd(a, b); }

    int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }

    class Edge {

        int w, weight;

        Edge(int w, int weight) {
            this.weight = weight;
            this.w = w;
        }
    }

    class Vertex implements Comparable<Vertex> {

        int v;
        long dist;

        Vertex(int v, long dist) {
            this.dist = dist;
            this.v = v;
        }

        @Override
        public int compareTo(Vertex V) { return Long.compare(this.dist, V.dist); }
    }
}

Floyd


  如果是一道最短路径的结果题。

  竞赛时限内能运行完 O ( n 3 ) O(n^{3}) O(n3) 的程序。

  那其实无脑套 F l o y d Floyd Floyd 就行。

public class Test {

    public static void main(String[] args) { new Test().run(); }

    int N = 2021;

    void run() {
        long[][] floyd = new long[N + 1][N + 1];
        for (int v = 1; v < N; v++)
            for (int w = v + 1; w <= min(N, v + 21); w++)
                floyd[v][w] = floyd[w][v] = lcm(v, w);
        for (int k = 1; k <= N; k++)
            for (int v = 1; v <= N; v++)
                if (floyd[v][k] == 0) continue;
                else for (int w = 1; w <= N; w++)
                    if (floyd[k][w] == 0) continue;
                    else if (floyd[v][w] == 0 || floyd[v][k] + floyd[k][w] < floyd[v][w])
                        floyd[v][w] = floyd[v][k] + floyd[k][w];
        System.out.println(floyd[1][N]);
    }

    long min(int a, int b) { return a < b ? a : b; }

    int lcm(int a, int b) { return a * b / gcd(a, b); }

    int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }
}

  半分钟就出来了,还行。


A*


  隐隐觉得能找到一些有启发性的性质。

  推了一下午狗屁没推出来,就当在这开个坑把。

在这里插入代码片

动态规划


  受不同的图性质影响,通常最短路径问题难以在线性时间内用动态规划解决。

  但这里给定无向图,

  我们将最短路径上的节点按升序排列,对于任意 v v v w w w 1 < v < w < n 1 < v < w < n 1<v<w<n 只存在以下两种情况:

在这里插入图片描述
  但只有序号的绝对差小于等于 21 21 21 时,两个节点之间才存在边,即二图情况的前提条件是 1 < v < w ≤ 22 1 < v < w \leq 22 1<v<w22,将其推广至 1 ≤ x < v < w < y ≤ n 1 \leq x < v < w < y \leq n 1x<v<w<yn 的情况,

  显然,从源点到任意点 V V V 的最短路径只会从 [ V − 21 , V + 21 ] [V -21,V+21] [V21,V+21] 中产生,我们先顺序的求出每个 W = V + 21 W = V + 21 W=V+21 较优路径,再用每个 W W W [ W − 21 , W ) [W - 21, W) [W21,W) 间的节点进行松弛,松弛完毕时 ( 1 , V ] (1,V] (1,V] 间的路径已是最优。

  综上有状态转移方程:

   d p ( i ) = min ⁡ { d p ( j ) + l c m ( i , j ) } dp(i) = \min\{dp(j) + lcm(i, j)\} dp(i)=min{dp(j)+lcm(i,j)} i > j ≥ i − 21 i > j \ge i -21 i>ji21

public class Test {

    public static void main(String[] args) { new Test().run(); }

    int N = 2021;

    void run() {
        long[] dp = new long[N + 1];
        for (int w = 2; w <= N; w++) {
            dp[w] = Long.MAX_VALUE;
            for (int v = w - 1; v > 0 && v >= w - 21; v--)
                dp[w] = min(dp[w], dp[v] + lcm(v, w));
        }
        System.out.println(dp[N]);
    }

    long min(long a, long b) { return a < b ? a : b; }

    int lcm(int a, int b) { return a * b / gcd(a, b); }

    int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }
}

#F 时间显示

时间限制: 1.0 1.0 1.0s 内存限制: 512.0 512.0 512.0MB 本题总分: 15 15 15


问题描述

  小蓝要和朋友合作开发一个时间显示的网站。在服务器上,朋友已经获取了当前的时间,用一个整数表示,值为从 1970 1970 1970 1 1 1 月 1 日 00 : 00 : 00 00:00:00 00:00:00 到当前时刻经过的毫秒数。
  现在,小蓝要在客户端显示出这个时间。小蓝不用显示出年月日,只需显示出时分秒即可,毫秒也不用显示,直接舍去即可。
  给定一个用整数表示的时间,请将这个时间对应的时分秒输出。


输入格式

  输入一行包含一个整数,表示时间。


输出格式

  输出时分秒表示的当前时间,格式形如 H H HH HH: M M MM MM: S S SS SS,其中 H H HH HH 表示时,值为 0 0 0 23 23 23 M M MM MM 表示分,值为 0 0 0 59 59 59 S S SS SS 表示秒,值为 0 0 0 59 59 59。时、分、秒不足两位时补前导 0 0 0


测试样例1

Input:
46800999

Output:
13:00:00

测试样例2

Input:
1618708103123

Output:
01:08:23

评测用例规模与约定

  对于所有评测用例,给定的时间为不超过 1 0 18 10^{18} 1018 的正整数。


Java Win


import java.util.Scanner;
import java.time.LocalTime;
import java.time.format.DateTimeFormatter;

public class Main {

    public static void main(String[] args) { new Main().run(); }

    void run() {
        System.out.println(
            LocalTime.MIDNIGHT.
            plusSeconds(
            	new Scanner(System.in).nextLong() / 1000).
            format(DateTimeFormatter.ISO_LOCAL_TIME)
        );
    }
}

不依赖 API 的实现


import java.util.Scanner;

public class Test {

    public static void main(String[] args) { new Test().run(); }

    void run() {
        long t = new Scanner(System.in).nextLong();
        System.out.printf("%02d:%02d:%02d",
            t / 3600000 % 24, t / 60000 % 60, t / 1000 % 60);
    }
}

  送分。


#G 最少砝码

时间限制: 1.0 1.0 1.0s 内存限制: 512.0 512.0 512.0MB 本题总分: 20 20 20


问题描述

  你有一架天平。现在你要设计一套砝码,使得利用这些砝码可以称出任意小于等于 N N N 的正整数重量。
  那么这套砝码最少需要包含多少个砝码?
  注意砝码可以放在天平两边。


输入格式

  输入包含一个正整数 N N N


输出格式

  输出一个整数代表答案。


测试样例1

Input:
7

Output:
3

Explanation:
3 个砝码重量是 1、4、6,可以称出 1 至 7 的所有重量。
1 = 1;
2 = 6 − 4 (天平一边放 6,另一边放 4);
3 = 4 − 1;
4 = 4;
5 = 6 − 1;
6 = 6;
7 = 1 + 6;
少于 3 个砝码不可能称出 1 至 7 的所有重量。

评测用例规模与约定

  对于所有评测用例, 1 ≤ N ≤ 1000000000 1 ≤ N ≤ 1000000000 1N1000000000


变种三进制


  不知道怎么取标题,也算是个规律题,

  这不是纯纯的恶心人吗。


  一个集合中包含 n n n 个数,任取若干数可以加减出任意小于等于 N N N 的正整数。

  首先要考虑怎么去满足题目要求的性质,

  设第 i i i 个砝码的重量为 w i w_{i} wi,原集合 A N = { w 1 , w 2 , ⋯   , w n } A_{N} = \{w_{1},w_{2},\cdots,w_{n}\} AN={w1,w2,,wn}

  要满足题意首先要有 s u m ( A ) ≥ N sum(A) \ge N sum(A)N

  设我们知道了 A ⌊ N / 3 ⌋ A_{\lfloor N/3 \rfloor} AN/3 的方案,那么我们就能在这个方案里加入一个 2 ⌊ N / 3 ⌋ + 1 2\lfloor N/3 \rfloor + 1 2N/3+1,就能用 2 ⌊ N / 3 ⌋ + 1 2\lfloor N/3 \rfloor + 1 2N/3+1 A ⌊ N / 3 ⌋ A_{\lfloor N/3 \rfloor} AN/3 中个若干元素做差表示出 ( ⌊ N / 3 ⌋ , 2 ⌊ N / 3 ⌋ + 1 ) (\lfloor N/3 \rfloor, 2\lfloor N/3 \rfloor + 1) (N/3,2N/3+1),对若干元素求和表示出 ( 2 ⌊ N / 3 ⌋ + 1 , N ] (2\lfloor N/3 \rfloor + 1, N] (2N/3+1,N],并入 A ⌊ N / 3 ⌋ A_{\lfloor N/3 \rfloor} AN/3 本身能表示的范围,即能表示出任意小于等于 N N N 的正整数。

  如果 A ⌊ N / 3 ⌋ A_{\lfloor N/3 \rfloor} AN/3 本身是最优的,那么往里面加入 K = 2 ⌊ N / 3 ⌋ + 1 K = 2\lfloor N/3 \rfloor + 1 K=2N/3+1 A N A_N AN 也一定是最优的,因为要使得 K + s u m ( A ⌊ N / 3 ⌋ ) ≥ N K + sum(A_{\lfloor N/3 \rfloor}) \ge N K+sum(AN/3)N K K K 必须大于等于 2 ⌊ N / 3 ⌋ + 1 2\lfloor N/3 \rfloor + 1 2N/3+1,而当 K > 2 ⌊ N / 3 ⌋ + 1 K > 2\lfloor N/3 \rfloor + 1 K>2N/3+1 时,就无法表示出 ⌊ N / 3 ⌋ + 1 \lfloor N/3 \rfloor + 1 N/3+1

  当然这一切还有个前提条件,那就是 s u m ( A ⌊ N / 3 ⌋ ) = ⌊ N / 3 ⌋ sum(A_{\lfloor N/3 \rfloor}) = \lfloor N/3 \rfloor sum(AN/3)=N/3。’

  不过到这里已经足够启发我们去顺推了,

  因为这个问题的边界是显然的,

  当 N = 1 N = 1 N=1 时, A 1 = { 1 } A_{1} = \{1\} A1={1}

  我们往 A 1 A_{1} A1 中加入 2 × s u m ( A 1 ) + 1 2 × sum(A_{1}) + 1 2×sum(A1)+1,得到 A 4 A_{4} A4,即

  当 N = 4 N = 4 N=4 时, A 4 = { 1 , 3 } A_{4} = \{1,3\} A4={1,3}

  当 N = 13 N = 13 N=13 时, A 13 = { 1 , 3 , 9 } A_{13} = \{1,3,9\} A13={1,3,9}

   ⋯ ⋯ \cdots \cdots

  当然还存在 N N N 不在我们找到的最优规律中。

  我们设 N = 5 N = 5 N=5

  因为 A 4 = { 1 , 3 } A_{4} = \{1,3\} A4={1,3} 的最优性, 2 2 2 个元素至多组成任意小于等于 4 4 4 的正整数,

  因为 A 13 = { 1 , 3 , 9 } A_{13} = \{1,3,9\} A13={1,3,9} 的最优性, 3 3 3 个元素可以表示任意小于等于 13 13 13 的正整数。

  即对 N = 5 N = 5 N=5 给出的答案,必须大于 2 2 2 小于等于 3 3 3

  对于给出任意 N N N 我们都可以按照这个性质求出答案。

  同时在三进制下来看这个规律:

   { N } = { ( 1 ) 3 , ( 11 ) 3 , ( 11 ) 3 , ⋯   } \{N\} = \{(1)_{3},(11)_{3},(11)_{3},\cdots\} {N}={(1)3,(11)3,(11)3,}

  可以二分,但没有必要。

import java.util.Scanner;

public class Main {

    public static void main(String[] args) { new Main().run(); }

    void run() {
        long N = new Scanner(System.in).nextLong(), ans = 1;
        for (long pow3 = 1; pow3 < N; pow3 = pow3 * 3 + 1, ans++);
        System.out.println(ans);
    }
}

#H 杨辉三角形

时间限制: 5.0 5.0 5.0s 内存限制: 512.0 512.0 512.0MB 本题总分: 20 20 20


  下面的图形是著名的杨辉三角形:
  如果我们按从上到下、从左到右的顺序把所有数排成一列,可以得到如下数列:

请添加图片描述
   1 , 1 , 1 , 1 , 2 , 1 , 1 , 3 , 3 , 1 , 1 , 4 , 6 , 4 , 1 , ⋯ 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, \cdots 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,
  给定一个正整数 N N N,请你输出数列中第一次出现 N N N 是在第几个数?


输入格式

  输入一个整数 N N N


输出格式

  输出一个整数代表答案。


测试样例1

Input:
6

Output:
13

评测用例规模与约定

  对于 20 20 20% 的评测用例, 1 ≤ N ≤ 10 1 ≤ N ≤ 10 1N10
  对于所有评测用例, 1 ≤ N ≤ 1000000000 1 ≤ N ≤ 1000000000 1N1000000000


  图片高清重置


类比单调数列


  杨辉三角最外层全部是 1 1 1

  第二层则是自然数序列。
在这里插入图片描述
  因为杨辉三角是左右对称的,因此我们可以忽略右边(左边的数字总是比右边先出现),并将数字按层分成若干序列。
请添加图片描述
  由于序列都是从上置下单调递增的,我们可以在每一个这种序列上,二分查找 N N N 的位置,特别的, N = 1 N = 1 N=1 时直接输出 1 1 1

  此外,杨辉三角第 n n n 行 m 列 列

   = C n − 1 m − 1 = ( n − 1 ) ! ( m − 1 ) ! ( n − m ) ! =C_{n-1}^{m-1} = \cfrac{(n-1)!}{(m-1)!(n - m)!} =Cn1m1=(m1)!(nm)!(n1)!

  这个数字增长的非常快 C 32 16 = 1166803110 > 1 e 9 C_{32}^{16} = 1166803110 > 1e9 C3216=1166803110>1e9

  也就至多在 14 14 14 条(除去最外两层)这样的序列中查找 N N N 的位置,因为序列的单调性不允许 N N N 的出现。

import java.util.Scanner;

public class Main {

    public static void main(String[] args) { new Main().run(); }

    int N;

    void run() {
        N = new Scanner(System.in).nextInt();
        if (N == 1) System.out.println(1);
        else {
            long ans = (N + 1L) * N / 2 + 2;
            for (int m = 2; m < 16; m++) {
                int start = m * 2, end = N;
                while (start <= end) {
                    int mid = start + end >> 1;
                    if (C(mid, m) == N) {
                        ans = min(ans, (mid + 1L) * mid / 2 + m + 1);
                        break;
                    } if (C(mid, m) > N) end = mid - 1;
                    else start = mid + 1;
                }
            }
            System.out.println(ans);
        }
    }

    long min(long a, long b) { return a < b ? a : b; }

    long C(int n, int m) {
        long num = 1;
        for (int nm = 1; nm <= m; n--, nm++)
            if ((num = num * n / nm) > N) return num;
        return num;
    }
}

#I 左孩子右兄弟

时间限制: 2.0 2.0 2.0s 内存限制: 512.0 512.0 512.0MB 本题总分: 25 25 25


问题描述

  对于一棵多叉树,我们可以通过 “左孩子右兄弟” 表示法,将其转化成一棵二叉树。
  如果我们认为每个结点的子结点是无序的,那么得到的二叉树可能不唯一。换句话说,每个结点可以选任意子结点作为左孩子,并按任意顺序连接右兄弟。
  给定一棵包含 N N N 个结点的多叉树,结点从 1 1 1 N N N 编号,其中 1 1 1 号结点是根,每个结点的父结点的编号比自己的编号小。请你计算其通过 “左孩子右兄弟” 表示法转化成的二叉树,高度最高是多少。注:只有根结点这一个结点的树高度为 0 0 0
  例如如下的多叉树:
请添加图片描述
  可能有以下 3 3 3 种 (这里只列出 3 3 3 种,并不是全部) 不同的 “左孩子右兄弟”表示:
请添加图片描述
  其中最后一种高度最高,为 4 4 4


输入格式

  输入的第一行包含一个整数 N N N
  以下 N − 1 N −1 N1 行,每行包含一个整数,依次表示 2 2 2 N N N 号结点的父结点编号。


输出格式

  输出一个整数表示答案。


测试样例1

Input:
5
1
1
1
2

Output:
4

评测用例规模与约定

  对于 30 30 30% 的评测用例, 1 ≤ N ≤ 20 1 ≤ N ≤ 20 1N20
  对于所有评测用例, 1 ≤ N ≤ 100000 1 ≤ N ≤ 100000 1N100000


树形 DP


  一棵树的高度等于根节点最高子树的高度加一,

  而一棵由左孩子右兄弟表示法得到的二叉树,

  我们可以将最大的子树放在最右边,

  这种策略下,每棵子树的高度为子树个数加最高子树高度。

  显 然 正 确

  于是有状态转移方程: d p ( v ) = c o u n t ( s o n ( v ) ) + m a x { d p ( s o n ( v ) ) } dp(v) = \mathrm{count(son(}v\mathrm{))} + \mathrm{max\{}dp\mathrm{(son(}v\mathrm{))\}} dp(v)=count(son(v))+max{dp(son(v))}

import java.io.*;
import java.util.*;

public class Main {

    public static void main(String[] args) { new Main().run(); }

    List<Integer>[] tree;

    void run() {
        InputReader in = new InputReader(System.in);
        int n = in.readInt(), v;
        tree = new List[n + 1];
        for (int w = 2; w <= n; w++) {
            v = in.readInt();
            if (tree[v] == null)
                tree[v] = new ArrayList();
            tree[v].add(w);
        }
        System.out.println(dp(1));
    }

    int dp(int v) {
        if (tree[v] == null) return 0;
        int max = 0;
        for (int w : tree[v])
            max = Math.max(max, dp(w));
        return tree[v].size() +  max;
    }

    class InputReader {

        BufferedReader reader;
        StringTokenizer token;

        InputReader(InputStream in) {
            this.reader = new BufferedReader(new InputStreamReader(in));
        }

        String read() {
            while (token == null || !token.hasMoreTokens()) {
                try {
                    token = new StringTokenizer(reader.readLine());
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            return token.nextToken();
        }

        int readInt() { return Integer.parseInt(read()); }
    }
}

#J 双向排序

时间限制: 5.0 5.0 5.0s 内存限制: 512.0 512.0 512.0MB 本题总分: 25 25 25


问题描述

  给定序列 ( a 1 , a 2 , ⋅ ⋅ ⋅ , a n ) = ( 1 , 2 , ⋅ ⋅ ⋅ , n ) (a_{1}, a_{2}, · · · , a_{n}) = (1, 2, · · · , n) (a1,a2,,an)=(1,2,,n),即 a i = i a_{i} = i ai=i
  小蓝将对这个序列进行 m m m 次操作,每次可能是将 a 1 , a 2 , ⋅ ⋅ ⋅ , a q i a_{1}, a_{2}, · · · , a_{q_{i}} a1,a2,,aqi 降序排列,或者将 a q i , a q i + 1 , ⋅ ⋅ ⋅ , a n a_{q_{i}}, a_{q_{i+1}}, · · · , a_{n} aqi,aqi+1,,an 升序排列。
  请求出操作完成后的序列。


输入格式

  输入的第一行包含两个整数 n , m n, m n,m,分别表示序列的长度和操作次数。
  接下来 m m m 行描述对序列的操作,其中第 i i i 行包含两个整数 p i , q i p_{i}, q_{i} pi,qi 表示操作类型和参数。当 p i = 0 p_{i} = 0 pi=0 时,表示将 a 1 , a 2 , ⋅ ⋅ ⋅ , a q i a_{1}, a_{2}, · · · , a_{q_{i}} a1,a2,,aqi 降序排列;当 p i = 1 p_{i} = 1 pi=1 时,表示将 a q i , a q i + 1 , ⋅ ⋅ ⋅ , a n a_{q_{i}}, a_{q_{i+1}}, · · · , a_{n} aqi,aqi+1,,an 升序排列。


输出格式

  输出一行,包含 n n n 个整数,相邻的整数之间使用一个空格分隔,表示操作完成后的序列。


测试样例1

Input:
3 3
0 3
1 2
0 2

Output:
3 1 2

Explanation:
原数列为 (1, 2, 3)。
第 1 步后为 (3, 2, 1)。
第 2 步后为 (3, 1, 2)。
第 3 步后为 (3, 1, 2)。与第 2 步操作后相同,因为前两个数已经是降序了。

评测用例规模与约定

  对于 30 30 30% 的评测用例, n , m ≤ 1000 n, m ≤ 1000 n,m1000
  对于 60 60 60% 的评测用例, n , m ≤ 5000 n, m ≤ 5000 n,m5000
  对于所有评测用例, 1 ≤ n , m ≤ 100000 1 ≤ n, m ≤ 100000 1n,m100000 0 ≤ p i ≤ 1 0 ≤ p_{i} ≤ 1 0pi1 1 ≤ q i ≤ n 1 ≤ q_{i} ≤ n 1qin


去冗操作


  其实看到这个数据规模,五分钟写完 Brute Force,就可以下一道了, O ( m n log ⁡ n ) O(mn \log n) O(mnlogn) 就能过 60 60 60% 的用例,

  多的时间去证明其他程序的正确性可能收益会高点。

  不过,骗分就多骗两个吧。

  对于连续且 p i p_{i} pi 相同操作,在 p i = 0 p_{i} = 0 pi=0 时只需要做 q i q_{i} qi 最大的操作,在 p i = 1 p_{i} = 1 pi=1 时只需要做 q i q_{i} qi 最小的操作,如图:

请添加图片描述
  显然去掉冗余操作后,还是和原操作是等价的,只需要建立一个栈就能在线性时间内完成去冗,并且代码量较少。

  特别的,我可以先将 ( p : 1 , q : 1 ) (p:1,q:1) (p:1,q:1) 压入栈底。

import java.io.*;
import java.util.*;

public class Main {

    public static void main(String[] args) { new Main().run(); }

    void run() {
        InputReader in = new InputReader(System.in);
        PrintWriter out = new PrintWriter(System.out);
        int n = in.readInt(), m = in.readInt();
        Deque<Step> deque = new ArrayDeque();
        deque.push(new Step(1, 1));
        while (m-- > 0) {
            int p = in.readInt();
            int q = in.readInt();
            while (deque.size() > 0 && deque.peek().p == p)
                if (p == 0)
                    q = max(q, deque.pop().q);
                else
                    q = min(q, deque.pop().q);
            deque.push(new Step(p, q));
        }
        Integer[] ans = new Integer[n];
        for (int i = 0; i < n; i++)
            ans[i] = i + 1;
        deque.pollLast();
        while (deque.size() > 0) {
            Step step = deque.pollLast();
            if (step.p == 0)
                Arrays.sort(ans, 0, step.q, (a, b)->(b - a));
            else
                Arrays.sort(ans, step.q - 1, n);
        }
        for (int i = 0; i < n; i++) {
            out.print(ans[i]);
            out.print(' ');
        }
        out.flush();
    }

    int max(int a, int b) { return a > b ? a : b; }

    int min(int a, int b) { return a < b ? a : b; }

    class Step {

        int p, q;

        Step(int p, int q) {
            this.p = p;
            this.q = q;
        }
    }

    class InputReader {

        BufferedReader reader;
        StringTokenizer token;

        InputReader(InputStream in) {
            this.reader = new BufferedReader(new InputStreamReader(in));
        }

        String read() {
            while (token == null || !token.hasMoreTokens()) {
                try {
                    token = new StringTokenizer(reader.readLine());
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            return token.nextToken();
        }

        int readInt() { return Integer.parseInt(read()); }
    }
}

填数游戏


  其实最开始就想直接写到这一步,

  但是我忙的同时又有点闲,就拆开写吧。

  经过上述去冗操作,可以发现,最后需要操作的是一个 p   0 ∣ 1 p \ 0\mid 1 p 01 交替的序列,为了便于读者理解,

  这里将原序列和操作抽象成不等长不同色线段,

  特别的,原序列和 p = 1 p = 1 p=1 的操作是一个颜色,因为原序列本就是升序。

请添加图片描述
  将 p = 0 p=0 p=0 p = 1 p=1 p=1 最大操作范围标记出来。

在这里插入图片描述
  显然,在 q q q 不为端点时,每次操作都有段不变的区间。

  图像告诉了我们,如果 q q q 操作的范围盖过了栈里最近的 q q q,那么不仅这个最近的 q q q,连同栈顶 q q q 相反的操作都是可以跳过的。

  同时根据这个性质优化后,根据栈内剩余的操作,我们总是能找到一段顺或倒序的不变区间。

  将不变区间填入最终的答案,整个算法就大体完成了。

import java.io.*;
import java.util.*;

public class Main {

    public static void main(String[] args) { new Main().run(); }

    void run() {
        InputReader in = new InputReader(System.in);
        PrintWriter out = new PrintWriter(System.out);
        int n = in.readInt(), m = in.readInt(), top;
        Step[] stack = new Step[m + 1];
        for (top = 0; m-- > 0;) {
            int p = in.readInt();
            int q = in.readInt();
            if (p == 0) {
                while (top > 0 && stack[top].p == p) q = max(q, stack[top--].q);
                while (top > 1 && stack[top - 1].q <= q) top -= 2;
                stack[++top] = new Step(p, q);
            } else if (top > 0){
                while (top > 0 && stack[top].p == p) q = min(q, stack[top--].q);
                while (top > 1 && stack[top - 1].q >= q) top -= 2;
                stack[++top] = new Step(p, q);
            }
        }
        int[] ans = new int[n + 1];
        int a = n, l = 0, r = n - 1;
        for (int i = 1; i <= top; i++)
            if (stack[i].p == 0)
                while (r >= stack[i].q && l <= r) ans[r--] = a--;
            else
                while (l + 1 < stack[i].q && l <= r) ans[l++] = a--;
        if ((top & 1) == 1)
            while (l <= r) ans[l++] = a--;
        else
            while (l <= r) ans[r--] = a--;
        for (int i = 0; i < n; i++) {
            out.print(ans[i]);
            out.print(' ');
        }
        out.flush();
    }

    int max(int a, int b) { return a > b ? a : b; }

    int min(int a, int b) { return a < b ? a : b; }

    class Step {

        int p, q;

        Step(int p, int q) {
            this.p = p;
            this.q = q;
        }
    }

    class InputReader {

        BufferedReader reader;
        StringTokenizer token;

        InputReader(InputStream in) {
            this.reader = new BufferedReader(new InputStreamReader(in));
        }

        String read() {
            while (token == null || !token.hasMoreTokens()) {
                try {
                    token = new StringTokenizer(reader.readLine());
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            return token.nextToken();
        }

        int readInt() { return Integer.parseInt(read()); }
    }
}

Chtholly Tree


  未加限定的珂朵莉树 ( C h t h o l l y T r e e \mathrm{Chtholly Tree} ChthollyTree),就是红黑树上建值域线段树,在随机构造的数据下期望复杂度为 O ( n log ⁡ log ⁡ n ) O(n \log \log n) O(nloglogn)

  但 J a v a \mathrm{Java} Java 实现起来非常痛苦,于是 p l a n   B \mathrm{plan\ B} plan B,改用链表实现,

  其在随机构造的数据下期望复杂度为 O ( n log ⁡ n ) O(n \log n) O(nlogn)

  珂朵莉树的策略就是将值域相同的区间合并成一个节点,

  对于任意 [ L , R ] [L,R] [L,R] 上的操作,我们都能转换成珂朵莉树 m e r g e ( s p l i t ( L ) , s p l i t ( R + 1 ) ) \mathrm{merge(split(L), split(R+1))} merge(split(L),split(R+1)) 上的操作。

  这里其实是珂朵莉链表而不是树

  举个具体且形象的例子对我来说还是太难了,

  兄弟们自己找篇博客参考一下吧。

  虽然捏个踢烂珂朵莉树的数据很简单,

  但就蓝桥的难度而言,

  出题人见没见过还是个问题。

import java.io.*;
import java.util.*;

public class Main {

    public static void main(String[] args) { new Main().run(); }

    void run() {
        InputReader in = new InputReader(System.in);
        int n = in.readInt(), m = in.readInt();
        Node[] root = new Node[n + 1];
        int[] P = new int[n + 1];
        Range lower, temp, now;
        lower = now = new Range(0);
        for (int i = 1; i <= n; i++) {
            now = now.next = new Range(i);
            root[i] = build(1, n, i);
        }
        now.next = new Range(n + 1);
        while (m-- > 0) {
            int p = in.readInt();
            int L = in.readInt();
            int R = n;
            if (p == 0) {
                R = L;
                L = 1;
            }
            now = lower;
            while (now.next.L <= L) now = now.next;
            if (L > now.L) {
                root[L] = split(root[now.L], L - now.L, P[now.L]);
                now = now.next = new Range(L, now.next);
            }
            temp = now;
            Node pq = null;
            while (now.L <= R) {
                if (now.next.L > R + 1) root[R + 1] = split(root[now.L], R + 1 - now.L, P[R + 1] = P[now.L]);
                pq = merge(pq, root[now.L]);
                now = now.next;
            }
            if (now.L == R + 1) temp.next = now;
            else temp.next = new Range(R + 1, now);
            root[L] = pq;
            P[L] = p;
        }
        StringBuilder ans = new StringBuilder();
        while ((lower = lower.next).L <= n)
            buildAns(ans, root[lower.L], 1, n, P[lower.L]);
        System.out.println(ans);
    }

    Node split(Node tree, int k, int p) {
        if (tree == null) return null;
        Node split= new Node(0);
        if (p == 0) {
            int K = K(tree.right);
            if (k <= K) {
                if (k != K) split.right = split(tree.right, k, p);
                split.left = tree.left;
                tree.left = null;
            } else split.left = split(tree.left, k - K, p);
        } else {
            int K = K(tree.left);
            if (k <= K) {
                if (k != K) split.left = split(tree.left, k, p);
                split.right = tree.right;
                tree.right = null;
            } else split.right = split(tree.right, k - K, p);
        }
        split.k = tree.k - k;
        tree.k = k;
        return split;
    }

    Node merge(Node tree1, Node tree2) {
        if (tree1 == null) return tree2;
        if (tree2 != null){
            tree1.k += K(tree2);
            tree1.left = merge(tree1.left, tree2.left);
            tree1.right = merge(tree1.right, tree2.right);
        }
        return tree1;
    }

    Node build(int L, int R, int k) {
        if (L == R) return new Node(1);
        Node node = new Node(1);
        int mid = L + R >> 1;
        if (k <= mid) node.left = build(L, mid, k);
        else node.right = build(mid + 1, R, k);
        return node;
    }

    void buildAns(StringBuilder builder, Node root, int L, int R, int p) {
        if (root == null) return;
        if (L == R) builder.append(L).append(' ');
        else {
            int mid = L + R >> 1;
            if (p == 0) {
                buildAns(builder, root.right, mid + 1, R, p);
                buildAns(builder, root.left, L, mid, p);
            } else {
                buildAns(builder, root.left, L, mid, p);
                buildAns(builder, root.right, mid + 1, R, p);
            }
        }
    }

    int K(Node node) { return node == null ? 0 : node.k; }

    class Range {

        int L;

        Range next;

        Range(int L) { this(L, null); }

        Range(int L, Range next) {
            this.L = L;
            this.next = next;
        }
    }

    class Node {

        int k = 1;

        Node left, right;

        Node(int k) { this.k = k; }
    }

    class InputReader {

        BufferedReader reader;
        StringTokenizer token;

        InputReader(InputStream in) { this.reader = new BufferedReader(new InputStreamReader(in)); }

        String read() {
            while (token == null || !token.hasMoreTokens()) {
                try {
                    token = new StringTokenizer(reader.readLine());
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            return token.nextToken();
        }

        int readInt() { return Integer.parseInt(this.read()); }
    }
}

  • 41
    点赞
  • 150
    收藏
    觉得还不错? 一键收藏
  • 15
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值