还是踏踏实实刷题吧!
小小水
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
解1
滚动数组解法,二维解法是正着来,朴素一点,但滚动法省空间,也就是一维,因为我们总是要利用上一层数组的数据,而上上层就没用了,所以要倒着来!think it and you will know
why
#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int f[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1; i<=n; i++)
{
cin>>v[i]>>w[i];
}
for(int i=1; i<=n; i++)
for(int j=m; j>=v[i]; j--)
{
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
cout<<f[m]<<endl;
return 0;
}
小水水
完全背包
数据和上一样,物品使用次数无限(g)
正解
#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int f[N][N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
f[i][j]=f[i-1][j]; //我先就不选
if(j>=v[i]){
f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]); //把max中的第二个参数f[i]改为f[i-1]就是小小水的朴素解法
}
}
}
cout<<f[n][m]<<endl;
return 0;
}
优化空间,修改转换方程,秒
#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int f[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++){
for(int j=v[i];j<=m;j++){
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout<<f[m]<<endl;
return 0;
}
水水
多重背包
就是每个物品多了一个使用次数的属性
朴素做法,和第一题不一样吗,不就是每个物品多了使用次数
就不用循环做了
#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int f[N];
int ge[N];
int main()
{
int n,m,nm;
cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>v[i]>>w[i]>>ge[i];
}
for(int i=1;i<=n;i++){
for(int j=m;j>=v[i];j--){
for(int z=1;z<=ge[i]&&j>=z*v[i];z++)
f[j]=max(f[j],f[j-v[i]*z]+w[i]*z);
}
}
cout<<f[m]<<endl;
return 0;
}
二水水
二进制优化多重背包问题
主要是面对大数量时能起点作用
主要是向01背包进行转换,
利用01串(二进制)1 2 4 8 16 能组成任何数的性质
比如一个物品 有18分
我们把它分成1 2 4 8 3 这样 5分
把每一份都看成一件新的物品,然后就把18分变成了5分
大大缩减了循环次数吧…
还是01问题哦
#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
#define M 2050
int v[N*M],w[N*M];
int f[M];
int main()
{
int n,m,nm;
cin>>n>>m;
int a,b,c;
int idx=1;
for(int i=1; i<=n; i++)
{
cin>>a>>b>>c;
for(int z=1; z<=c; z*=2)
{
v[idx]=a*z;
w[idx++]=b*z;
c-=z;
}
if(c>0)
{
v[idx]=a*c;
w[idx++]=b*c;
}
}
for(int i=1; i<=idx; i++)
{
for(int j=m; j>=v[i]; j--)
{
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout<<f[m]<<endl;
return 0;
}
混水
数据范围
0<N,V≤1000
0<vi,wi≤1000
−1≤si≤1000−1
输入样例
4 5
1 2 -1
2 4 1
3 4 0
4 5 2
输出样例:
8
前面三种情况混合起来,又可以拿1次,又可以拿无数次,又可以拿指定次
把这个问题转化为多重背包问题就可以,拿1次就是拿制定次,
如果是可以拿无数次的就按无数次算
拿指定次的,就用二进制处理一下
#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int f[N];
int s[N];
int main()
{
int n,m,nm;
cin>>n>>m;
int a,b,c;
int idx=1;
for(int i=1; i<=n; i++)
{
cin>>v[i]>>w[i]>>s[i];
if(s[i]==-1)
s[i]=1;
}
for(int i=1; i<=n; i++)
{
if(s[i]==0)
{
for(int j=v[i]; j<=m; j++)
{
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
for(int z=1; z<=s[i]; z*=2)
{
for(int j=m; j>=z*v[i]; j--)
{
f[j]=max(f[j],f[j-z*v[i]]+w[i]*z);
}
s[i]-=z;
}
if(s[i]>0)
{
for(int j=m; j>=s[i]*v[i]; j--)
{
f[j]=max(f[j],f[j-s[i]*v[i]]+w[i]*s[i]);
}
}
}
cout<<f[m]<<endl;
return 0;
}
二维背包
假如我们最多背M重的包,然后包的最大容量是V,然后我们要携带尽量多价值的东西
就是二维背包了,n是物品个数,V是最大容量,M是最大承重
输出最大价值
其实也是最简单的01背包问题,但是我们得明白前面的,自然这个就很easy
因为是01背包变形,我们就用从大到小这种去遍历
数据范围
0<N≤1000
0<V,M≤100
0<vi,mi≤100
0<wi≤1000
输入样例
4 5 6
1 2 3
2 4 4
3 4 5
4 5 6
输出样例:
8
#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int dp[N][N];
int s[N];
int main()
{
int n,M,V;
cin>>n>>V>>M;
for(int i=1;i<=n;i++){
cin>>v[i]>>w[i]>>s[i];
}
for(int i=1;i<=n;i++){
for(int j=V;j>=v[i];j--){
for(int x=M;x>=w[i];x--){
dp[j][x]=max(dp[j][x],dp[j-v[i]][x-w[i]]+s[i]);
}
}
}
cout<<dp[V][M]<<endl;
return 0;
}