背包1

还是踏踏实实刷题吧!

小小水

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
解1


滚动数组解法,二维解法是正着来,朴素一点,但滚动法省空间,也就是一维,因为我们总是要利用上一层数组的数据,而上上层就没用了,所以要倒着来!think it and you will know
why

#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int f[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1; i<=n; i++)
    {
        cin>>v[i]>>w[i];
    }
    for(int i=1; i<=n; i++)
        for(int j=m; j>=v[i]; j--)
        {
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    cout<<f[m]<<endl;
    return 0;
}

小水水

完全背包
数据和上一样,物品使用次数无限(g)
正解

#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int f[N][N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        cin>>v[i]>>w[i];
    }
    for(int i=1;i<=n;i++){
        for(int j=0;j<=m;j++){
            f[i][j]=f[i-1][j];	//我先就不选
            if(j>=v[i]){
                f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);	//把max中的第二个参数f[i]改为f[i-1]就是小小水的朴素解法
            }
        }
    }
    cout<<f[n][m]<<endl;
    return 0;
}

优化空间,修改转换方程,秒


#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int f[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        cin>>v[i]>>w[i];
    }
    for(int i=1;i<=n;i++){
        for(int j=v[i];j<=m;j++){
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }
    cout<<f[m]<<endl;
    return 0;
}

水水

多重背包
就是每个物品多了一个使用次数的属性
朴素做法,和第一题不一样吗,不就是每个物品多了使用次数
就不用循环做了

#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int f[N];
int ge[N];
int main()
{
    int n,m,nm;
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        cin>>v[i]>>w[i]>>ge[i];
    }
    for(int i=1;i<=n;i++){
        for(int j=m;j>=v[i];j--){
                for(int z=1;z<=ge[i]&&j>=z*v[i];z++)
            f[j]=max(f[j],f[j-v[i]*z]+w[i]*z);
        }
    }
    cout<<f[m]<<endl;
    return 0;
}

二水水

二进制优化多重背包问题
主要是面对大数量时能起点作用
主要是向01背包进行转换,
利用01串(二进制)1 2 4 8 16 能组成任何数的性质
比如一个物品 有18分
我们把它分成1 2 4 8 3 这样 5分
把每一份都看成一件新的物品,然后就把18分变成了5分
大大缩减了循环次数吧…
还是01问题哦

#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
#define M 2050
int v[N*M],w[N*M];
int f[M];
int main()
{
    int n,m,nm;
    cin>>n>>m;
    int a,b,c;
    int idx=1;
    for(int i=1; i<=n; i++)
    {
        cin>>a>>b>>c;
        for(int z=1; z<=c; z*=2)
        {
            v[idx]=a*z;
            w[idx++]=b*z;
            c-=z;
        }
        if(c>0)
        {
            v[idx]=a*c;
            w[idx++]=b*c;
        }
    }
    for(int i=1; i<=idx; i++)
    {
        for(int j=m; j>=v[i]; j--)
        {
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }
    cout<<f[m]<<endl;
    return 0;
}


混水

数据范围
0<N,V≤1000
0<vi,wi≤1000
−1≤si≤1000−1
输入样例
4 5
1 2 -1
2 4 1
3 4 0
4 5 2
输出样例:
8
前面三种情况混合起来,又可以拿1次,又可以拿无数次,又可以拿指定次
把这个问题转化为多重背包问题就可以,拿1次就是拿制定次,
如果是可以拿无数次的就按无数次算
拿指定次的,就用二进制处理一下

#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int f[N];
int s[N];
int main()
{
    int n,m,nm;
    cin>>n>>m;
    int a,b,c;
    int idx=1;
    for(int i=1; i<=n; i++)
    {
        cin>>v[i]>>w[i]>>s[i];
        if(s[i]==-1)
            s[i]=1;
    }
    for(int i=1; i<=n; i++)
    {
        if(s[i]==0)
        {
            for(int j=v[i]; j<=m; j++)
            {
                f[j]=max(f[j],f[j-v[i]]+w[i]);
            }
        }
        for(int z=1; z<=s[i]; z*=2)
        {
            for(int j=m; j>=z*v[i]; j--)
            {
                f[j]=max(f[j],f[j-z*v[i]]+w[i]*z);
            }
            s[i]-=z;
        }
        if(s[i]>0)
        {
            for(int j=m; j>=s[i]*v[i]; j--)
            {
                f[j]=max(f[j],f[j-s[i]*v[i]]+w[i]*s[i]);
            }

        }
    }
    cout<<f[m]<<endl;
    return 0;
}

二维背包

假如我们最多背M重的包,然后包的最大容量是V,然后我们要携带尽量多价值的东西
就是二维背包了,n是物品个数,V是最大容量,M是最大承重
输出最大价值
其实也是最简单的01背包问题,但是我们得明白前面的,自然这个就很easy
因为是01背包变形,我们就用从大到小这种去遍历

数据范围
0<N≤1000
0<V,M≤100
0<vi,mi≤100
0<wi≤1000
输入样例
4 5 6
1 2 3
2 4 4
3 4 5
4 5 6
输出样例:
8

#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define N 1050
int v[N],w[N];
int dp[N][N];
int s[N];
int main()
{
    int n,M,V;
    cin>>n>>V>>M;
    for(int i=1;i<=n;i++){
        cin>>v[i]>>w[i]>>s[i];
    }
    for(int i=1;i<=n;i++){
        for(int j=V;j>=v[i];j--){
            for(int x=M;x>=w[i];x--){
                dp[j][x]=max(dp[j][x],dp[j-v[i]][x-w[i]]+s[i]);
            }
        }
    }
    cout<<dp[V][M]<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值