动态规划专题 - 解题报告 - D

我们先来想想n2 怎么做,两个n2 循环一个求以i结尾的最长上升子序列,另一个逆序求一遍,然后枚举i,以i为中间点的长度,循环更新结果就有了。是不是很简单,恭喜你TLE。
想都不用想必T好吗?
没有个nlogn算法怎么在1e6的数据范围面前找场子?


n l o g n nlogn nlogn做法

我们其实不难看出,对于n2
做法而言,其实就是暴力枚举:将每个状态都分别比较一遍。但其实有些没有必要的状态的枚举,导致浪费许多时间,当元素个数到了104-105以上时,就已经超时了。而此时,我们可以通过另一种动态规划的方式来降低时间复杂度:
将原来的dp数组的存储由数值换成该序列中,上升子序列长度为i的上升子序列,的最小末尾数值。
这其实就是一种几近贪心的思想:我们当前的上升子序列长度如果已经确定,那么如果这种长度的子序列的结尾元素越小,后面的元素就可以更方便地加入到这条我们臆测的、可作为结果、的上升子序列中。
但是这样没有我们最需要的结果呀,我们要的还是位置信息。那也很简单,用二分查找就能很快地定位到序列的位置,最长的一个就是以i结尾的上升子序列。

代码(单边)

for (int i = 2; i <= n; i++)
    if (a[i] > low1[len1])					//如果能更新到末位
        {
            low1[++len1] = a[i];
            f1[i] = len1;					
        }
        else								//如果在队列中间
        {
            int k = lower_bound(low1 + 1, low1 + 1 + len1, a[i]) - low1;			//k代表当前的位置
            low1[k] = a[i];
            f1[i] = k;						//记录位置
        }

AC代码

#include<bits/stdc++.h>
#define FOR(a, b, c) for(int a=b; a<=c; a++)
#define maxn 1000005
#define maxm 55
#define hrdg 1000000007
#define inf 2147483647
#define llinf 9223372036854775807
#define ll long long
#define pi acos(-1.0)
#define ls p<<1
#define rs p<<1|1
using namespace std;

int n, low1[maxn], a[maxn], f[maxn], b[maxn], low2[maxn];
int f1[maxn], f2[maxn], ans, k[maxn];
int dp2[maxn], dp1[maxn];
inline int read()
{
    char c=getchar();long long x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}

int main()
{
    n = read();
    for (int i = 1; i <= n; i++)
    {
        a[i] = read();
        b[n + 1 - i] = a[i];
    }
	//正向求一遍
    int len1 = 0; low1[++len1] = a[1]; f1[1] = len1;
    for (int i = 2; i <= n; i++)
        if (a[i] > low1[len1])
        {
            low1[++len1] = a[i];
            f1[i] = len1;
        }
        else
        {
            int k = lower_bound(low1 + 1, low1 + 1 + len1, a[i]) - low1;
            low1[k] = a[i];
            f1[i] = k;
        }
    //FOR(i, 1, n) printf("%d ", f1[i]-1); cout<<endl;
	//反向再来一遍
    int len2 = 0; low2[++len2] = b[1]; f2[1] = len2;
    for (int i = 2; i <= n; i++)
        if (b[i] > low2[len2])
        {
            low2[++len2] = b[i];
            f2[i] = len2;
        }
        else
        {
            int k = lower_bound(low2 + 1, low2 + 1 + len2, b[i]) - low2;
            low2[k] = b[i];
            f2[i] = k;
        }
    for (int i = 1; i <= n; i++)
        ans = max(ans, min(f1[i], f2[n+1-i])*2-1);			//枚举更新
    cout<<ans<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值