我们先来想想n2 怎么做,两个n2 循环一个求以i结尾的最长上升子序列,另一个逆序求一遍,然后枚举i,以i为中间点的长度,循环更新结果就有了。是不是很简单,恭喜你TLE。
想都不用想必T好吗?
没有个nlogn算法怎么在1e6的数据范围面前找场子?
n l o g n nlogn nlogn做法:
我们其实不难看出,对于n2
做法而言,其实就是暴力枚举:将每个状态都分别比较一遍。但其实有些没有必要的状态的枚举,导致浪费许多时间,当元素个数到了104-105以上时,就已经超时了。而此时,我们可以通过另一种动态规划的方式来降低时间复杂度:
将原来的dp数组的存储由数值换成该序列中,上升子序列长度为i的上升子序列,的最小末尾数值。
这其实就是一种几近贪心的思想:我们当前的上升子序列长度如果已经确定,那么如果这种长度的子序列的结尾元素越小,后面的元素就可以更方便地加入到这条我们臆测的、可作为结果、的上升子序列中。
但是这样没有我们最需要的结果呀,我们要的还是位置信息。那也很简单,用二分查找就能很快地定位到序列的位置,最长的一个就是以i结尾的上升子序列。
代码(单边)
for (int i = 2; i <= n; i++)
if (a[i] > low1[len1]) //如果能更新到末位
{
low1[++len1] = a[i];
f1[i] = len1;
}
else //如果在队列中间
{
int k = lower_bound(low1 + 1, low1 + 1 + len1, a[i]) - low1; //k代表当前的位置
low1[k] = a[i];
f1[i] = k; //记录位置
}
AC代码
#include<bits/stdc++.h>
#define FOR(a, b, c) for(int a=b; a<=c; a++)
#define maxn 1000005
#define maxm 55
#define hrdg 1000000007
#define inf 2147483647
#define llinf 9223372036854775807
#define ll long long
#define pi acos(-1.0)
#define ls p<<1
#define rs p<<1|1
using namespace std;
int n, low1[maxn], a[maxn], f[maxn], b[maxn], low2[maxn];
int f1[maxn], f2[maxn], ans, k[maxn];
int dp2[maxn], dp1[maxn];
inline int read()
{
char c=getchar();long long x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int main()
{
n = read();
for (int i = 1; i <= n; i++)
{
a[i] = read();
b[n + 1 - i] = a[i];
}
//正向求一遍
int len1 = 0; low1[++len1] = a[1]; f1[1] = len1;
for (int i = 2; i <= n; i++)
if (a[i] > low1[len1])
{
low1[++len1] = a[i];
f1[i] = len1;
}
else
{
int k = lower_bound(low1 + 1, low1 + 1 + len1, a[i]) - low1;
low1[k] = a[i];
f1[i] = k;
}
//FOR(i, 1, n) printf("%d ", f1[i]-1); cout<<endl;
//反向再来一遍
int len2 = 0; low2[++len2] = b[1]; f2[1] = len2;
for (int i = 2; i <= n; i++)
if (b[i] > low2[len2])
{
low2[++len2] = b[i];
f2[i] = len2;
}
else
{
int k = lower_bound(low2 + 1, low2 + 1 + len2, b[i]) - low2;
low2[k] = b[i];
f2[i] = k;
}
for (int i = 1; i <= n; i++)
ans = max(ans, min(f1[i], f2[n+1-i])*2-1); //枚举更新
cout<<ans<<endl;
return 0;
}