首先在从一个点,目标是向西运输,那么它一路走过的路径x中可能朝西也可能朝北,但最终指向的都是西边,画图可知西方同行中所有的矿点必只能向西运输,即使是从出发就开始一路向北,最终也只能汇流进路径x中,指向西。从该点向北的运输,北方同列的考虑也是一样的。我们可以预处理出从一个点向西和向北的贡献是什么。
我们令dp[i][j]为前i行j列的矿石采集总数,在点(i, j)有这么一堆矿石,我们只能二选一将其向北或者向西运输,我们知道了一旦向西西方的所有点都必须向西,那么这一行的贡献对于整个dp[i][j]就是单行全向西加上这行上方dp[i - 1][j]的总和,同理向北就是单列向北的贡献加上dp[i][j - 1]的总和,二者比较找出最优决策。
状态转移方程:
dp[i][j] = max(west[i][j] + dp[i - 1][j], north[i][j] + dp[i][j - 1]);
我们读入时预处理出west[ ][ ]和north[ ][ ]数组,然后n2 递推即可。
AC代码:
#include<bits/stdc++.h>
#define FOR(a, b, c) for(int a=b; a<=c; a++)
#define maxn 505
#define maxm 2000005
#define hrdg 1000000007
#define inf 2147483647
#define llinf 9223372036854775807
#define ll long long
#define pi acos(-1.0)
#define ls p<<1
#define rs p<<1|1
#define id(a, b) (a-1)*(m+1)+b
using namespace std;
int dp[maxn][maxn], west[maxn][maxn], north[maxn][maxn];
int n, m, x;
inline int read(){
char c=getchar();long long x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int main()
{
n = read(); m = read();
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
{
x = read();
west[i][j] = west[i][j - 1] + x;
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
{
x = read();
north[i][j] = north[i - 1][j] + x;
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
dp[i][j] = max(west[i][j] + dp[i - 1][j], north[i][j] + dp[i][j - 1]);
cout<<dp[n][m];
return 0;
}