首先,做题的一个技巧就是观察数据范围奇特的地方。这道题的k只有20,n也比一般的图的10w级别要小,也许就是要在这里做文章。
一般来说突然出现的小数据k,就是让我们巧妙地将一个算法复杂度扩大k倍的常数就能做的情况。
分层图求最短路问题!
这个类图建立的思路很棒,就是把原图复制k份,形成一个三维的图形,同一层点之间的边权就是原图中的边权,相邻两层的点之间的边权都是零(脑子里一旦有了这个图的大致形态就能做,写起来很简单的)。
然后dis[i][j]就表示在第j层、1~i的最短路,对于每一个点和其所在层数,有两种转移:1.转移到同层相邻的点 2.转移到下一层相邻的点。跑一个二维dijkstra(加堆优化)就好了(虽然我是就用一维的方式表示的,不过只要把所有点表示出来就能行了)。
#include<bits/stdc++.h>
#define FOR(a, b, c) for(int a=b; a<=c; a++)
#define maxn 1000005 //需要开足够大的边数
#define maxm 55
#define hrdg 1000000007
#define zh 16711680
#define inf 2147483647
#define llinf 9223372036854775807
#define ll long long
#define pi acos(-1.0)
#define ls p<<1
#define rs p<<1|1
using namespace std;
ll n, m, k, start, goal, u, v, d;
struct Edge{ll to, nex, dis;}edge[maxn*20];
priority_queue< pair<ll, ll> > q;
ll dis[maxn], head[maxn], tot;
void add_edge(ll u, ll v, ll d) { edge[++tot] = {v, head[u], d}; head[u] = tot;}
bool vis[maxn];
inline ll read(){
char c=getchar();long long x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
void dijkstra()
{
for (int i = 0; i <= (k+1)*n; i++) //总共会有(k + 1)* n 个点
dis[i] = llinf;
dis[start] = 0;
memset(vis, 0, sizeof(vis));
q.push(make_pair(0, start));
while (!q.empty())
{
ll now = q.top().second; q.pop();
if (vis[now])
continue;
vis[now] = true;
for (int i = head[now]; i; i = edge[i].nex)
{
ll to = edge[i].to, dist = edge[i].dis;
if (dis[to] > dis[now] + dist)
{
dis[to] = dis[now] + dist;
q.push(make_pair(-dis[to], to));
}
}
}
}
int main()
{
n = read(); m = read(); k = read();
start = read(); goal = read();
for (int i = 1; i <= m; i++)
{
u=read(); v=read(); d=read();
add_edge(u, v, d); add_edge(v, u, d);
for (int j = 1; j <= k; j++)
{
add_edge(j*n+u, j*n+v, d); //分层,相邻层间如此建边
add_edge(j*n+v, j*n+u, d);
add_edge((j-1)*n+u, j*n+v, 0);
add_edge((j-1)*n+v, j*n+u, 0);
}
}
dijkstra(); //一般路过dij
ll ans = dis[goal];
for (int i = 1; i <= k; i++)
ans = min(ans, dis[i*n+goal]); //循环选择到每层的终点的最小值
cout << ans;
return 0;
}