Codeforces Round #636 (Div. 3)

58 篇文章 0 订阅
13 篇文章 1 订阅

A. Candies

题意:给一个n,让求一个x,使得 x+2x+4x+⋯+2k−1x = n

思路:转换一下等式就是 x = n / (1+2+4+…+2k−1),题目要求x是整数。那也就是说,n是整除于那一大坨的。并且题目保证有解。那么就暴力枚举k就好了嘛,找到一个使得n整除于他们的和的就行了。

AC代码:

#include <bits/stdc++.h>
#define int long long
#define mk make_pair
using namespace std;
const int N = 3e5+11;
const int mod = 1e9+7;
int t,n,m,k;
int a[N];
 
signed main(){
    int t;
    cin>>t;
    while(t--){
        cin>>n;
        int tmp = 3;
        int now = 4;
        while(n%tmp != 0){
            tmp += now;
            now *= 2;
        }
        cout<<n/tmp<<endl;
    }
    return 0;
}

B. Balanced Array

题意:找出一个数组,使得前一半元素都是偶数,后一半都是奇数。并且没有相同的元素。并且,前半部分的和等于后半部分的和。

思路:很容易想到,前面填充 2 4 6 8 10,后面填充1 3 5 7 9 这样子,但是这样子,两半和是不相等的。那么可以发现,如果这样填充的话, 后面的数比前面的每个小1,那么要让他们相等,就必须加上这个差值每个相差1,总的就是相差n/2。所以,如果n/2是奇数,因为后半部分也是奇数。那么他就会变成偶数。这就不符合题意了。所以,n/2是奇数的话,无解。反之,只要最后一个元素+n/2就行了。

AC代码:

#include <bits/stdc++.h>
#define int long long
#define mk make_pair
using namespace std;
const int N = 3e5+11;
const int mod = 1e9+7;
int t,n,m,k;
int a[N];

signed main(){
    int t;
    cin>>t;
    while(t--){
        cin>>n;
        if(n%4 != 0){
            cout<<"NO"<<endl;
        }else{
            for(int i = 0 ; i < n/2 ; i ++)
                a[i] = i*2+2;
            for(int i = n/2 ; i < n ; i ++)
                a[i] = (i-n/2)*2+1;
            a[n-1] += n/2;
            cout<<"YES"<<endl;
            for(int i = 0 ; i < n ; i ++){
                cout<<a[i]<<" ";
            }
            cout<<endl;
        }
    }
    return 0;
}

C. Alternating Subsequence

题意:一个数组,有正有负。然后要取一个子序列。子序列的元素正负号是交替出现的,求满足条件的最长的且和是最大子序列的和。

思路:要求最长,也就是碰到一堆连续的正数就取一个,碰到一堆连续的负数就取一个。并且都取最大的就好了。这样原数组中正负号交替出现了多少次,求出来的序列就出现了多少次。

AC代码:

#include <bits/stdc++.h>
#define int long long
#define mk make_pair
using namespace std;
const int N = 3e5+11;
const int mod = 1e9+7;
int t,n,m,k;
int a[N];
 
signed main(){
    int t;
    cin>>t;
    while(t--){
        cin>>n;
        for(int i = 0 ; i < n ; i ++) cin>>a[i];
        int pos = 1;
        a[0] = a[0];
        for(int i = 1 ; i < n ; i ++){
            if(a[i]*a[pos-1] > 0){
                a[pos-1] = max(a[pos-1],a[i]);
            }else{
                a[pos++] = a[i];
            }
        }
        int sum = 0;
        for(int i = 0 ; i < pos ; i ++) sum += a[i];
        cout<<sum<<endl;
    }
    return 0;
}

D. Constant Palindrome Sum

题意:一个数组,a[i],a[n-i] 这样的两两为一对,他们的和为sum[i],然后给了一个k,数组的元素都小于k,并且可以任意改变数组元素的值,现在要求一个x,使得所有这样的对的sum都是x,并且改变元素的次数最小。输出最小次数。

思路:

心路历程:一开始想的是三分,调到了结束也没调出来。完事恍然大悟,三分是错的!明显不具有单调性。然后看了一些博客,发现都是分类+差分,怎么搜都是这么说,感觉抄来抄去,也没看懂。然后突然想到了线段树的做法。直接用线段树暴力搞就好了。AC了。 然后,发现,线段树维护区间信息不就和差分维护区间信息一样嘛。写题写傻了。
正式思路:首先用一颗线段树维护 [1 - 2k ] 的区间信息。初始全为0。其实记录的就是改成 x 需要的操作次数。因为需要区间操作所以用线段树维护。好,然后枚举所有的数对。对于一个数对 (a[i],a[n-i]),如果最后求的x == sum[i] 那么,这对数对需要的操作次数就是0。或者说,这个数对,对于 x,需要的操作是0。然后考虑。需要两次操作的情况。如果x 小于他们的最小值,那么两个数都得变吧。所以这时候操作次数是 2。这时候的区间就是 [1- min(a[i],a[j])],对于x属于这些区间,操作数为2。所以这时候就用到线段树了。把这个区间全加上2。另外一种需要2次操作的情况。就是,因为元素最大只能为k。如果 x > max(a[i],a[j])+k,那说明,即使把一个数改成了最大值k,依然不够,还得改另外一个数。所以他们的操作数是2。那么1次操作数的自然就夹在他们中间了。 也就是 [min+1 ~ max+k],只需要改变一个值就可以了,但是还要注意,sum也在这个区间里。对于x = sum 需要的操作次数是0。所以避免把sum也加 了就行。这时候可以发现,线段树仅仅维护了一个区间的单点信息,大材小用了。用差分维护是一样的一样的。

AC代码:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 4e5 + 10;
//const int N = 1e6+7;
const int mod = 1e9+7;
int t,n,m,k;
int a[N],b[N];
typedef long long ll;

#define lson rt << 1	  // == rt * 2	 左儿子
#define rson rt << 1 | 1  // == rt * 2 + 1 右儿子
#define int_mid int mid = tree[rt].l + tree[rt].r >> 1

struct node {
	int l, r;
	ll val, lazy;
} tree[N * 4];

void push_up(int rt) {
	//tree[rt].val = min(tree[lson].val, tree[rson].val);
	//tree[rt].val = max(tree[lson].val, tree[rson].val);
	tree[rt].val = tree[lson].val + tree[rson].val;
}

void push_down(int rt) {
	if (tree[rt].lazy) {
		tree[lson].lazy += tree[rt].lazy;
		tree[rson].lazy += tree[rt].lazy;
		//{ // 维护最大最小值
		//	tree[lson].val += tree[rt].lazy;
		//	tree[rson].val += tree[rt].lazy;
		//}
		{ // 维护和
			int l = tree[rt].l, r = tree[rt].r;
			int mid = l + r >> 1;
			tree[lson].val += 1ll * (mid - l + 1) * tree[rt].lazy;
			tree[rson].val += 1ll * (r - mid) * tree[rt].lazy;
		}
		tree[rt].lazy = 0;
	}
}

void build(int rt, int l, int r) { // 建树
	tree[rt].l = l, tree[rt].r = r;
	tree[rt].lazy = 0;
	if (l == r) {
		tree[rt].val = 0; // 给定一个初始值
		return;
	} else {
		int mid = l + r >> 1; // (l + r) / 2
		build(lson, l, mid);
		build(rson, mid + 1, r);
		push_up(rt);
	}
}

void update_point(int rt, int pos, ll val) { // 单点更新
	if (tree[rt].l == tree[rt].r && pos == tree[rt].l) {
		tree[rt].val += val;
		return;
	}
	int_mid;
	if (pos <= mid) update_point(lson, pos, val);
	else update_point(rson, pos, val);
	push_up(rt);
}

void update_interval(int rt, int l, int r, ll val) { // 区间更新
	if (l <= tree[rt].l && r >= tree[rt].r) {
		tree[rt].lazy += val;
		//tree[rt].val += val; // 维护最大最小值
		tree[rt].val += 1ll * (tree[rt].r - tree[rt].l + 1) * val; // 维护和
		return;
	}
	push_down(rt);
	int_mid;
	if (l <= mid) update_interval(lson, l, r, val);
	if (r > mid) update_interval(rson, l, r, val);
	push_up(rt);
}

ll query_point(int rt, int pos) { // 单点查询
	if (tree[rt].l == tree[rt].r && tree[rt].l == pos)
		return tree[rt].val;
	push_down(rt);
	int_mid;
	if (pos <= mid) return query_point(lson, pos);
	else return query_point(rson, pos);
}

ll query_interval(int rt, int l, int r) { // 区间查询
	if (l <= tree[rt].l && r >= tree[rt].r)
		return tree[rt].val;
	push_down(rt);
	int_mid;
	if (r <= mid) return query_interval(lson, l, r);
	else if (l > mid) return query_interval(rson, l, r);
	else {
		//return min(query_interval(lson, l, mid), query_interval(rson, mid + 1, r));
		//return max(query_interval(lson, l, mid), query_interval(rson, mid + 1, r));
		return query_interval(lson, l, mid) + query_interval(rson, mid + 1, r);
	}
}

signed main(){
    int t;
    cin>>t;
    while(t--){
        cin>>n>>k;
        for(int i = 0 ; i < n ; i ++) cin>>a[i];
        build(1,1,2*k+1);
        for(int i = 0 ; i < n/2 ; i ++){
            int sum = a[i]+a[n-i-1];
            int minn = min(a[i],a[n-i-1]);
            int maxx = max(a[i],a[n-i-1])+k;
            update_interval(1,1,minn,2);
            if(maxx>=minn+1){
                update_interval(1,minn+1,maxx,1);
                update_interval(1,sum,sum,-1);
            }
            update_interval(1,maxx+1,2*k+1,2);
        }
        int res = 1e18;
        for(int i = 2 ; i <= 2*k ; i ++){
            //cout<<i<<" "<<query_point(1,i)<<endl;
            res = min(res,query_point(1,i));
        }
        cout<<res<<endl;
    }
    return 0;
}

E. Weights Distributing

题意:给定一个无向图。给定一个权值数组。要把权值分配到每条边上,使得从a到b再到c经过的总边权和最小。

思路:显然,把最小的权值分配到最短路径上就是最优解。考虑一个朴素的想法。就是先求a-b的最短路径。然后把小权值分配上去。再求b-a的最短路径,把剩下最小的边权分配上去。但是这样肯定是不对的。如下图:这种策略下,如果要从6到1再到8。那么肯定不会选择到 3 -> 8这条边。 但是实际上,如果绕远路从 1-2-3-8 实际上会比 1-7-8 更优。所以不能直接这样贪心。 有可能有的边会走两遍。那就要去枚举,哪些边会走两遍,或者说枚举哪些点作为中继点,也就是说 a-d-b-d-c。枚举这个d。那么这个d肯定是在某一条最短路径上的点。所以要先找出所有 可能在最短路径上的点。然后以这些点作为中继。但是还要枚举两遍。有可能是在 a-b 的最短路径上的点作为中继。也有可能是 b-c最短路径上的点作为中继。取最小。才是正确答案。

在这里插入图片描述

AC代码:

#include <iostream>
#include <bits/stdc++.h>
#define int long long
#define mk make_pair
#define gcd __gcd
#define pb push_back
using namespace std;
const double eps = 1e-10;
const int mod = 1e9+7;
const int N = 1e6+7;
int n,m,k,t = 1,cas = 1;
//int a[N],b[N];
struct node{
    int from,to,dis;
    node(int a,int b,int c):from(a),to(b),dis(c){}
};
vector<node> que;
int dis1[N];
int dis2[N];
int cost[N];
int onpath[N];
bool mark[N];
vector<int> edge[N];

void bfs(int s,int t,int dis[]){
    for(int i = 0 ; i <= n ; i ++) mark[i] = 0;
    mark[s] = 1;
    int pos = 0;
    que.pb(node(-1,s,0));
    while(pos < que.size()){
        node now = que[pos++];
        dis[now.to] = now.dis;
        for(int i = 0; i < edge[now.to].size();i ++){
            int to = edge[now.to][i];
            if(!mark[to]){
                mark[to] = 1;
                que.pb(node(pos-1,to,now.dis+1));
            }
        }
    }
    que.clear();
}

int solve(int a,int b,int c){
    for(int i = 1 ; i <= n ; i ++)
        onpath[i] = 0;
    bfs(a,b,dis1);
    int dis_ab = dis1[b];
    bfs(b,a,dis2);
    for(int i = 1 ; i <= n ; i ++)
        if(dis1[i]+dis2[i] == dis_ab)
            onpath[i] = 1;
    bfs(c,b,dis2);
    int res = cost[dis_ab];
    int minn = 1e18;
    for(int i = 1; i <= n; i ++){
        if(!onpath[i]) continue;
        if(dis1[i] > dis_ab) continue;
        if(dis2[i]+dis_ab > m) continue;
        int new_cost = cost[dis_ab-dis1[i]] + (cost[dis2[i]+dis_ab]-cost[dis_ab]);
        //cout<<i<<" "<< dis1[i]<<" "<<dis2[i]<<" "<<(cost[dis2[i]+dis_ab]-cost[dis_ab])<<" "<<new_cost<<endl;
        minn = min(minn,new_cost);
    }
    return res+minn;
}

signed main(){
    cin>>t;
    while(t--){
        int a,b,c;
        cin>>n>>m>>a>>b>>c;
        for(int i = 1 ; i <= n ; i ++)
            edge[i].clear();
        for(int i = 1 ; i <= m ; i ++)  cin>>cost[i];
        sort(cost+1,cost+m+1);
        for(int i = 2 ; i <= m ; i ++)
            cost[i] += cost[i-1];
        for(int i = 0 ; i < m ; i ++){
            int x,y;
            cin>>x>>y;
            edge[x].pb(y);
            edge[y].pb(x);
        }
        cout<<min(solve(a,b,c),solve(c,b,a))<<endl;
    }
}

/**
**/

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值