FJNU第二次友谊赛B题

本文探讨了在特定条件下,计数排序和快速排序在处理数字序列排序问题中的应用。通过对一道具体题目进行分析,展示了如何使用计数排序和快速排序解决大规模数字序列排序的问题,并比较了两种排序算法的时间和空间复杂度。

题意:输入一个数字序列,数字范围为[1,99][1,99][1,99],输出该数字序列从小到大排序的结果。(水题)

题目分析:注意到 0&lt;n≤20000000 &lt; n ≤ 20000000<n2000000,如果用冒泡排序、选择排序则会超时,时间复杂度O(n2)O(n^2)O(n2),而用快速排序则内存超限。因为要排序的数字范围较小,这里我用计数排序来解决,时间复杂度O(n+k)O(n+k)O(n+k), kkk为数字范围。

ACACAC代码:
然而该题并没有限制内存,写个快速排序就过了。

#include<stdio.h>
#include<algorithm>
#define mx 2000005
using namespace std;

int a[mx];

int main()
{
	int i, n;
	while(scanf("%d", &n), n){
		for(i = 0; i < n; i++)
		scanf("%d", &a[i]);
		sort(a, a + n);
		for(i = 0; i < n; i++){
			if(i != n-1)//控制一下输出格式
			printf("%d ", a[i]);
			else
			printf("%d\n", a[i]);
		}
	}
	return 0;
}

另外一份用计数排序也过了:

#include<stdio.h>
#include<string.h>

int main()
{
	int i, j, t, n, ans[105];
	while(scanf("%d", &n), n){
		memset(ans, 0, sizeof ans);
		for(i = 0; i < n; i++){
			scanf("%d", &t);
			ans[t]++;//计数排序的基本思路就是用数组储存某个数字出现的次数
		}
		int flag = 1;
		for(i = 1; i <= 99; i++){
			for(j = 0; j < ans[i]; j++){
				if(flag){//控制一下输出格式
					printf("%d", i);
					flag = 0;
				}
				else
				printf(" %d", i);
			}
		}
		printf("\n");		
	}
	return 0;
}

在这里插入图片描述

**卷积序列嵌入推荐模型(Caser)的Matlab实现解析** 卷积神经网络在序列数据处理中展现出卓越性能,尤其在时间序列分析与自然语言处理领域。Caser模型创新性地将卷积结构引入推荐系统,通过挖掘用户历史行为中的时序特征,构建动态兴趣画像,从而提升个性化推荐的精准度。 **模型架构与技术细节** 1. **双路径卷积设计**:模型采用水平与垂直两个方向的卷积结构。水平卷积聚焦于用户近期行为模式,提取短期兴趣特征;垂直卷积则分析历史交互的整体分布,刻画长期偏好倾向。两种特征经融合后形成完整的用户表征。 2. **序列向量化处理**:用户历史交互记录被编码为定长嵌入向量序列,每个向量对应项目的潜在特征。这种表示方法既能保留项目的语义信息,又可通过卷积运算挖掘项目间的关联规律。 3. **多尺度特征提取**:卷积层配备不同尺寸的滤波器核,分别捕获局部序列片段和全局维度关系。水平卷积沿时间轴滑动检测时序模式,垂直卷积在特征维度上进行交叉分析。 4. **特征压缩与强化**:池化层对卷积输出进行降维处理,通过最大值池化保留显著特征,或通过均值池化整合全局信息,在维持表征能力的同时提升计算效率。 5. **预测模块构建**:全连接层将抽象特征映射为预测分值,采用均方误差或交叉熵作为优化目标,通过梯度下降算法迭代调整模型参数,缩小预测值与真实反馈的差异。 **Matlab实现方案** 1. **模块化编程框架**:项目文件包含数据加载、网络构建、训练流程和性能评估四大核心模块,采用函数封装方式保证代码可复用性。 2. **数据标准化流程**:原始数据经矩阵化转换后,进行数值归一化与缺失值填补处理,形成符合模型输入规范的张量结构。 3. **网络组件配置**:依托深度学习工具箱,逐层定义卷积核数量、池化窗口尺寸、全连接节点数等结构参数,构建端到端的计算图谱。 4. **训练策略优化**:配置自适应动量优化器,采用动态学习率调整机制,结合早停法与权重衰减技术平衡模型收敛速度与泛化能力。 5. **评估体系建立**:通过批量推理生成推荐列表,综合计算准确率、覆盖率及多样性指标,采用交叉验证评估模型稳定性。 该实现方案充分发挥Matlab在矩阵运算与原型开发中的优势,为推荐算法研究提供可扩展的实验平台。通过调整网络深度、滤波器配置等超参数,可适应电商、社交网络等不同应用场景的个性化需求。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值