【算法】贪心算法


贪心算法概述

活动安排问题

  1. 问题描述:
  • 设有n个活动的集合E={1,2,…,n},其中,每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。
  • 每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si<fi。如果选择了活动i,则它在半开区间[si, fi)内占用资源。
  • 若区间[si, fi)与区间[sj, fj)不相交,则称活动i与活动j是相容的
    即:当si≥fj或sj≥fi时,活动i与活动j相容。
  • 活动安排问题:在所给的活动集合中选出最大的相容活动子集。
  1. 解决思路:
  • 结束时间的非减序对活动进行排列
  • 选择一个结束时间最早的活动
  • 依次检查后续活动是否与当前已选择的所有活动相容,若相容则将该活动加入已选择活动集合中,再继续检查下一活动,否则直接检查下一活动
  • 直到所有活动全部检查完毕
  1. 代码实现思路:
  • 给所有活动按照结束时间升序排列。
  • 排在第一个的活动安排在内,以第一个为基准,然后往后找后面活动开始时间大于上一个活动结束时间,安排进来…
  1. 代码实现:
public class Main2 {

    //测试
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);

        while (true){
            int n = scanner.nextInt();
            //输入0 结束测试
            if (n == 0){
                break;
            }else {
                //输入 n 个节目的  开始时间 和 结束时间
                Program[] programs = new Program[n];
                for (int i = 0; i < n; i++) {
                    programs[i] = new Program();
                    programs[i].start = scanner.nextInt();
                    programs[i].end = scanner.nextInt();
                }
                System.out.println(activity(n, programs));
            }
        }
    }


    public static int activity(int n,Program[] programs){
        //结束时间排序
        for (int i = 0; i < n; i++) {
            int min = programs[i].end;
            int index = i;
            for (int j = i+1; j < n; j++) {
                if (programs[j].end < min){
                    min = programs[j].end;
                    index = j;
                }
            }
            swap(programs,i,index);
        }

        // 以第1个节目开始,sum为计算,最多可以看几个节目
        int sum = 1;
        //下标:第1个节目开始,下标为0 ,记录安排进来的节目下标
        int m = 0;
        for (int i = 1; i < n; i++) {
            //后面的节目 开始时间 大于 上一个安排节目的结束时间 ,安排进来
            if (programs[i].start >= programs[m].end){
                sum++;
                m = i;
            }
        }
        
        return sum;
    }

    /**
     *  交换
     * @param programs
     * @param i,j
     */
    public static void swap(Program[] programs,int i,int j){
        Program p = programs[i];
        programs[i] = programs[j];
        programs[j] = p;
    }
}


class Program{
    int start;
    int end;
}

最优装载

  1. 问题描述
  • 有一批集装箱要装上一艘载重量为c的轮船,其中集装箱i的重量为wi
  • 最优装载问题要求在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。
  • 变量xi=0表示不装入集装箱i,xi=1表示装入集装箱i
    在这里插入图片描述
  1. 贪心策略:采用重量最轻者先装的贪心选择策略,可产生最优装载问题的最优解。
  • 每次选择时,从剩下的集装箱中,选择重量最小的集装箱
  • 可以保证已经选出来的集装箱总重量最小,装载的集装箱数量最多,直到轮船不能再继续装载为止
  • 步骤:排序==》装载
  1. 代码实现:
public class Main {


    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        
        //多组测试:
        while(scanner.hasNextInt()){
            //集装箱的种类
            int n = scanner.nextInt();
            //船能装载的重量
            int c = scanner.nextInt();
            
            // map集合中存放集装箱 编号和重量
            HashMap<String, Integer> maps = new HashMap<>();
            for (int i = 0; i < n; i++) {
                String id = scanner.next();
                int w = scanner.nextInt();
                maps.put(id,w);
            }
            
            List<String> load = load(c, maps);
            //输出船的装载数量
            System.out.println(load.size());
            //输出集装箱装载的顺序
            for (String integer : load) {
                System.out.print(integer+" ");
            }
            System.out.println();
        }
    }

    /**
     * 
     * @param c  船装载的重量
     * @param maps  每个集装箱对应的编号及其重量
     * @return list集合,船最多装载的集装箱编号
     */
    public static List<String> load(int c, Map<String,Integer> maps){
        //Map集合根据value排序
        ArrayList<Map.Entry<String, Integer>> list = new ArrayList<>(maps.entrySet());

        Collections.sort(list, new Comparator<Map.Entry<String, Integer>>() {
            @Override
            public int compare(Map.Entry<String, Integer> o1, Map.Entry<String, Integer> o2) {
                //升序排列
                return o1.getValue() - o2.getValue();
            }
        });



        ArrayList<String> arrayList = new ArrayList<>();
        
        //遍历排好序的Map集合
        Iterator<Map.Entry<String, Integer>> iterator = list.iterator();
        while (iterator.hasNext()){
            Map.Entry<String, Integer> entry = iterator.next();
            if (entry.getValue() <= c){
                c -= entry.getValue();
                arrayList.add(entry.getKey());
            }else {
                break;
            }
        }

        return arrayList;
    }


}

  1. 除了用Map集合,还可以定义一个集装箱的类,保存编号和重量两个属性。

Prim算法

  1. Prim算法是用来解决最小生成树Minimal Spanning Trees (MST)问题

  2. 任何只由图G的边构成,并包含G的所有顶点的树称为G的生成树

  3. 加权无向图G的生成树的权重是该生成树的所有边的权重之和

  4. 最小生成树是其所有生成树中权重最小的生成树

  5. N个顶点,选取N-1条边,构建一个连通图,且这N-1条边的权重之和最小

  6. 实例演示Prim算法构造最小生成树:在这里插入图片描述

  7. 实现思路:
    (1) 任意选定一点s,设集合S={s}
    (2) 从不在集合S的点中选出一个点j使得其与S内的某点i的距离最短,则(i,j)就是生成树上的一条边,同时将j点加入S
    (3) 转到(2)继续进行,直至所有点都己加入S集合

  8. 代码实现:

public class Prim {


    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = 7;
        int[][] g = new int[7][7];
        //初始 默认无穷远
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                g[i][j] = 1000;
            }
        }
        while (scanner.hasNextInt()){
            int i = scanner.nextInt();
            int j = scanner.nextInt();
            int w = scanner.nextInt();
            g[i][j] = w;
        }

        prim(n,g);
    }

    /**
     *
     * @param n 点数
     * @param g 存储图
     */
    public static void prim(int n,int[][] g){

        //记录不在S中的顶点在S中的最近邻接点
        int[] closeset = new int[n];
        //记录不在S中的顶点到S的最短距离,即到最近邻接点的权值
        int[] lowcost = new int[n];
        //标记顶点是否被访问,访问过的顶点标记为1
        int[] used = new int[n];

        //初始化上面3个数组
        for (int i = 0; i < n; i++) {

            //初始化,S中只有第1个点(0)
            // 获取其他顶点到第1个点(0)的距离,不直接相邻的顶点距离为无穷大
            lowcost[i] = g[0][i];
            //初始情况下所有点的最近邻接点都为第1个点(0)
            closeset[i] = 0;
            //初始情况下所有点都没有被访问过
            used[i] = 0;
        }

        //访问第1个点(0),将第1个点加到S中
        used[0] = 1;

        //每一次循环找出一个到S距离最近的顶点
        for (int i = 1; i < n; i++) {
            int j = 0;
            //每一次循环计算所有没有使用的顶点到当前S的距离,得到在没有使用的顶点中到S的最短距离以及顶点号
            for (int k = 0; k < n; k++) {
                //如果顶点k没有被使用,且到S的距离小于j到S的距离,将k赋给j
                if (used[k]==0 && lowcost[k] < lowcost[j]){
                    j = k;
                }
            }
            //输出S中与j最近邻点,j,以及它们之间的距离
            System.out.println(closeset[j]+" "+j+" "+lowcost[j]);
            //将j增加到S中
            used[j] = 1;
            for (int k = 0; k < n; k++) {
                //松弛操作,如果k没有被使用,且k到j的距离比原来k到S的距离小
                if (used[k]==0 && g[j][k] < lowcost[k]){
                    //将k到j的距离作为新的k到S之间的距离
                    lowcost[k] = g[j][k];
                    //将j作为k在S中的最近邻点
                    closeset[k] = j;
                }
            }
        }

    }
}

# 输入
0 1 28
0 5 10
5 4 25
4 3 22
3 2 12
2 1 16
1 6 14
6 4 24
6 3 18
aa  #结束输入
#输出
0 5 10
5 4 25
4 3 22
3 2 12
2 1 16
1 6 14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值