题目大意
给出n个结点(1~n)之间的 n - 1条边,问是否能构成一棵树,如果不能构成则输出它有的连通分量个数,如果能构成一棵树,输出能构成最深的树的高度时,树的根结点。如果有多个,按照从小到大输出。
分析
首先深度优先搜索判断它有几个连通分量。如果有多个,那就输出Error: x components,如果只有一个,就两次深度优先遍历,先从一个结点遍历后保留最高高度拥有的结点们,然后从这些结点中的其中任意一个开始dfs得到最高高度的结点们,这两个结点集合的并集就是所求。
AC代码
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <set>
#include <vector>
using namespace std;
vector<vector<int> > edge;
vector<int> v;
set<int> ans;
int n, maxHeight;
int vis[10005];
void dfs(int node, int height)
{
if (maxHeight < height)
{
maxHeight = height;
v.clear();
v.push_back(node);
}
else if (maxHeight == height)
{
v.push_back(node);
}
vis[node] = 1;
for (int i = 0; i < edge[node].size(); i++)
{
if (!vis[edge[node][i]])
{
dfs(edge[node][i], height + 1);
}
}
}
int main()
{
scanf("%d", &n);
edge.resize(n + 1);
for (int i = 0; i < n - 1; i++)
{
int u, v;
scanf("%d%d", &u, &v);
edge[u].push_back(v);
edge[v].push_back(u);
}
int start, cnt = 0;
for (int i = 1; i <= n; i++)
{
if (!vis[i])
{
dfs(i, 1);
cnt++;
if (i == 1)
{
for (int j = 0; j < v.size(); j++)
{
ans.insert(v[j]);
}
start = v[0];
}
}
}
if (cnt > 1)
{
printf("Error: %d components\n", cnt);
}
else
{
v.clear();
memset(vis, 0, sizeof(vis));
dfs(start, 1);
for (int i = 0; i < v.size(); i++)
{
ans.insert(v[i]);
}
for (auto i = ans.begin(); i != ans.end(); i++)
{
printf("%d\n", *i);
}
}
return 0;
}