PAT A1021

题目大意

给出n个结点(1~n)之间的 n - 1条边,问是否能构成一棵树,如果不能构成则输出它有的连通分量个数,如果能构成一棵树,输出能构成最深的树的高度时,树的根结点。如果有多个,按照从小到大输出。

分析

首先深度优先搜索判断它有几个连通分量。如果有多个,那就输出Error: x components,如果只有一个,就两次深度优先遍历,先从一个结点遍历后保留最高高度拥有的结点们,然后从这些结点中的其中任意一个开始dfs得到最高高度的结点们,这两个结点集合的并集就是所求。

AC代码
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <set>
#include <vector>
using namespace std;
vector<vector<int> > edge;
vector<int> v;
set<int> ans;
int n, maxHeight;
int vis[10005];
void dfs(int node, int height)
{
	if (maxHeight < height)
	{
		maxHeight = height;
		v.clear();
		v.push_back(node);
	}
	else if (maxHeight == height)
	{
		v.push_back(node);
	}
	vis[node] = 1;
	for (int i = 0; i < edge[node].size(); i++)
	{
		if (!vis[edge[node][i]])
		{
			dfs(edge[node][i], height + 1);
		}
	}
}
int main()
{
	scanf("%d", &n);
	edge.resize(n + 1);
	for (int i = 0; i < n - 1; i++)
	{
		int u, v;
		scanf("%d%d", &u, &v);
		edge[u].push_back(v);
		edge[v].push_back(u);
	}
	int start, cnt = 0;
	for (int i = 1; i <= n; i++)
	{
		if (!vis[i])
		{
			dfs(i, 1);
			cnt++;
			if (i == 1)
			{
				for (int j = 0; j < v.size(); j++)
				{
					ans.insert(v[j]);
				}
				start = v[0];
			}
		}
	}
	if (cnt > 1)
	{
		printf("Error: %d components\n", cnt);
	}
	else
	{
		v.clear();
		memset(vis, 0, sizeof(vis));
		dfs(start, 1);
		for (int i = 0; i < v.size(); i++)
		{
			ans.insert(v[i]);
		} 
		for (auto i = ans.begin(); i != ans.end(); i++)
		{
			printf("%d\n", *i);
		}
	}
	return 0;
}
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值