Codeforces 832D题解报告

Codeforces 832D
题目链接:http://codeforces.com/problemset/problem/832/D

题意:在一棵生成树上,给出了三个点,求三个点之间最大的相交点数。

分析:三个点没有规定起止点,所以求得就是其中两个点到第三个点的路径上的重复点数。(图有点丑 见谅)
在这里插入图片描述
也就相当于AB,BC,AC三条路径中的公共交点到ABC三点的最大边数。分别求出边数然后取最大值再+1就可以了,在得出具体的计算公式之后这应该算一道倍增/LCA模板题(划掉)

需要注意的是倍增求LCA需要bfs/dfs构造深度,再预处理祖先数组,这也是算法的核心,在这里维护一个数组DP[i][j],表示下标以i为起点的长度为2^j的序列的信息。倍增法中的DP[i][j]为:结点 i 的向上 2^j 层的祖先。其中,DP[i][0]为节点i的父节点。
递推方程: DP[i][j] = DP[ DP[i][j-1] ] [j-1]。
DP[i][j-1]是结点i往上跳2^(j-1) 层的祖先, DP[i][j-1] 上再向上跳2^ (j-1)层,相当于从结点i,先跳2^ (j-1)层,再跳2^ (j-1)层,最终到达2^j层。

void bfs() {
	queue<int> que;
	h[1] = 1;
	que.push(1);
	while (!que.empty()) {
		int u = que.front();
		que.pop();
		for (int i = head[u]; i != -1; i = e[i].next) {
			int v = e[i].v;
			if (h[v])
				continue;
			h[v] = h[u] + 1;
			//求结点所在的深度
			fa[v][0] = u;
			//给fa数组初始化每个结点的父节点
			que.push(v);
		}
	}
}
	for (j = 1; (1 << j) <= n; j++)
			for (i = 1; i <= n; i++)
				if (fa[i][j - 1])
					fa[i][j] = fa[fa[i][j - 1]][j - 1];
					//dp数组

LCA详解:

int lca(int u, int v) {
	if (h[u] < h[v])
		swap(u, v);
	//确保u的深度大于v
	for (i = 20; i >= 0; i--)
		if (h[u] - (1 << i) >= h[v])
			u = fa[u][i];
	//往上跳,深度--,使两者先处于同一个深度
	if (u == v)
		return u;
	//如果已经处在同一个结点上直接return
	for (i = 20; i >= 0; i--) {
	//从大到小遍历回溯的高度,如果没有相遇就同时向上跳
		if (fa[u][i] != fa[v][i])
			u = fa[u][i], v = fa[v][i];
	}
	//最后一次会跳到以v,u的lca为父节点的两个节点上,返回此时u/v的父节点即可
	return fa[u][0];
}

计算(枚举)距离:

int dis(int u, int v) {
	return h[u] + h[v] - 2 * h[lca(u, v)];
	//相当于两个点的深度相加减去两倍的相交距离(lca到根节点的距离)
}

求(最大)重合距离:

int dis1 = dis(u, v), dis2 = dis(u, t), dis3 = dis(v, t);
int maxx = max((dis1 + dis2 - dis3) / 2, max((dis1 + dis3 - dis2) / 2, (dis2 + dis3 - dis1) / 2));

全部代码:

#include <algorithm> //swap
#include <iostream>
#include <cstring>
#include <map>
#include <queue>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 200010;
int i, j, k;
int m, n, q;
int head[maxn], h[maxn];
int fa[maxn][25];
int index;
struct node {
	int v, next;
} e[maxn];

void add(int u, int v) {
	e[index].v = v;
	e[index].next = head[u];
	head[u] = index++;
}

void bfs() {
	queue<int> que;
	h[1] = 1;
	que.push(1);
	while (!que.empty()) {
		int u = que.front();
		que.pop();
		for (int i = head[u]; i != -1; i = e[i].next) {
			int v = e[i].v;
			if (h[v])
				continue;
			h[v] = h[u] + 1;
			fa[v][0] = u;
			que.push(v);
		}
	}
}

int lca(int u, int v) {
	if (h[u] < h[v])
		swap(u, v);
	for (i = 20; i >= 0; i--)
		if (h[u] - (1 << i) >= h[v])
			u = fa[u][i];
	if (u == v)
		return u;
	for (i = 20; i >= 0; i--) {
		if (fa[u][i] != fa[v][i])
			u = fa[u][i], v = fa[v][i];
	}
	return fa[u][0];
}

int dis(int u, int v) {
	return h[u] + h[v] - 2 * h[lca(u, v)];
}

int main() {
	while (cin >> n >> q) {
		int u, v, t;
		memset(head, -1, sizeof head);
		memset(h, 0, sizeof h);
		memset(fa, 0, sizeof fa);
		index = 0;
		for (i = 2; i <= n; i++) {
			cin >> u;
			add(u, i);
			add(i, u);
		}
		bfs();
		for (j = 1; (1 << j) <= n; j++)
			for (i = 1; i <= n; i++)
				if (fa[i][j - 1])
					fa[i][j] = fa[fa[i][j - 1]][j - 1];
		while (q--) {
			scanf("%d %d %d", &u, &v, &t);
			int dis1 = dis(u, v), dis2 = dis(u, t), dis3 = dis(v, t);
			int maxx = max((dis1 + dis2 - dis3) / 2, max((dis1 + dis3 - dis2) / 2, (dis2 + dis3 - dis1) / 2));
			cout << maxx + 1 << endl;
		}
	}
	return 0;
}

发布了3 篇原创文章 · 获赞 0 · 访问量 324
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览