1.问题
数学语言:对n个不同的数构成的数组A进行排序,其中n=2^k
2.解析
把一个无序的数组分成n个数据,每个数据本身比较合并一次,之后再和下一个数组比较并合并,以此类推。
3.设计
merge(int A[], int l, int r, int mid) {
i = l;
j = mid + 1;
//新建a数组,用于归并排序
for (k = l; k <= r; k++)//i和j用掉了,注意这里要用k作为循环遍量
a[k - l] = A[k];
//比较过程
for (k = l; k <= r; k++) {
if (i > mid) {
A[k] = a[j - l];
j++;
}
else if (j > r) {
A[k] = a[i - l];
i++;
}
else if (a[i - l] > a[j - l]) {
A[k] = a[j - l];
j++;
}
else {
A[k] = a[i - l];
i++;
}
}
}
merge_sort(int A[], int l, int r) {
if (l >= r)
return;
int mid = (l + r) / 2;
merge_sort(A, l, mid);
merge_sort(A, mid + 1, r);//递归实现排序
merge(A, l, r, mid);//调用merge函数进行比较合并
}
4.分析
最坏情况下的时间复杂度:
W(n)=2W(n/2)+n-1;
W(1)=0;
Solve:
k=logn;
W(n)=nlogn-n+1;
O(n)=nlogn;
平均时间复杂度:
O(n)=nlogn;
5.源码
Github:
https://github.com/myycjw/Mergesort
代码解读及食用方法:
已放在源代码注释内
#include<stdio.h>
#include<stdlib.h>
#include<iostream>
using namespace std;
const int maxn = 10e5 + 10;
int i, j, k;
int n, m, q;
int a[maxn];
void merge(int A[], int l, int r, int mid) {
i = l;
j = mid + 1;
for (k = l; k <= r; k++)
a[k - l] = A[k];
for (k = l; k <= r; k++) {
if (i > mid) {
A[k] = a[j - l];
j++;
}
else if (j > r) {
A[k] = a[i - l];
i++;
}
else if (a[i - l] > a[j - l]) {
A[k] = a[j - l];
j++;
}
else {
A[k] = a[i - l];
i++;
}
}
}
void merge_sort(int A[], int l, int r) {
if (l >= r)
return;
int mid = (l + r) / 2;
merge_sort(A, l, mid);
merge_sort(A, mid + 1, r);
merge(A, l, r, mid);
}
int A[maxn];
int main() {
scanf("%d", &n);//输入A序列中有几个数字
for (i = 0; i < n; i++)
scanf("%d", &A[i]);//输入A序列的每个元素
merge_sort(A, 0, n-1);
for (i = 0; i < n; i++)
printf("%d ", A[i]);
return 0;
}