目录
1. 连接服务器(需要知道服务器ip地址)
我们在跑深度学习代码时一般都要用gpu加速训练,我们自己的电脑上没有gpu,所以需要连接实验室的服务器(服务器是linux系统),然后将代码传到服务器上运行,下面的方法都要保证本地电脑与服务器在一个局域网内。
如果本地是Linux
如果你的电脑是Linux系统,那么恭喜你,直接用在终端输入
ssh 服务器ip地址
就可以连上服务器
如果本地是Windows
如果你使用的是windows,就需要下载相应的软件,一种是MobaXterm,一种是Xshell6(Xttp是传输文件时要用的),选择任意一个下载就好
在这里我选用的是上面的MobaXterm,打开该软件后新建会话(Session),用ssh连接,输入服务器Ip地址,和你的用户名,最后点击确定
进入后就要输入一下自己服务器用户的密码,然后就可以进入到自己的home/用户名/下,要注意自己没有root权限安装一些文件,所以一般安装文件比较复杂。
如果自己的电脑和服务器不在同一个局域网内,我们需要远程控制,可以使用teamviewer或者向日葵。
2. 安装Miniconda3或者Anaconda3
下载安装包
首先安装Miniconda3,我之前使用的是Ananconda3,其实Miniconda3与Anaconda3的命令相同,是一个更轻量级的Aanaconda,安装速度也更快。
在自己的本地电脑上下载服务器所要的Miniconda安装包,然后上传到服务器上进行安装。在官网或者清华源上下载对应服务器版本的Miniconda3,我选择的是linux版本x64_64。
下载完成是一个.sh文件,然后上传到自己的服务器目录下,可以在MobaXterm中点击上传小图标即可上传文件
进行安装
在服务器上进入上传的Miniconda目录下,用bash运行.sh文件
bash Minconda3-latest-Linux-x86_64.sh # 安装miniconda
最后init选择yes,即可将miniconda添加到环境变量中,环境变量在.bashrc中,是一个隐藏文件,一般在/home/用户名/ 目录下
ls -a # 查看当前目录所有文件
打开.bashrc(可以使用vi),在.bashrc最下方我们可以看到conda initialize的语句块就代表成功添加环境变量
如果要对.bashrc进行修改,记着修改完之后运行下面的命令来激活环境变量。
source .bashrc # 激活环境变量
安装完之后目录下也多出了miniconda3的文件夹,
3. 配置虚拟环境
用conda创建虚拟环境是conda很好的用法,因为每一个深度学习项目用的不同的框架,如pytorch,tensorFlow,caffe等,并且有些包的版本也有着严格要求。
我们需要为每一个项目建立一个独立的虚拟环境,在各自的虚拟环境里安装其需要的包,这样可以保证各个代码运行的环境不产生冲突。虚拟环境的名字就是最终端前面()里面显示的。
我们现在可以看到终端最前面有(base)的符号,代表现在在conda最基本的环境中,我们可以输入
conda list # 查看当前环境安装的包
创建一个虚拟环境
创建一个名为py37_torch的虚拟环境,代表我运行的项目需要用Python3.7,pytorch框架,名字可以自行定义;最后是Python的版本,可以自己选择。
conda create -n py37_torch python=3.7 # 创建虚拟环境
我们可以创建多个不同的虚拟环境
查看环境列表
列出所有环境
conda env list # 查看环境列表
激活虚拟环境
每次跑程序时,先要激活相应的虚拟环境,激活后最前面小括号中就会显示当前所在的虚拟环境的名字
conda activate py37_torch # 激活虚拟环境py37_torch
退出虚拟环境
直接使用以下命令可以退出当前虚拟环境
conda deactivate # 退出虚拟环境
删除虚拟环境
conda env remove -n py37_torch # 删除名为py37_torch的虚拟环境