CCF-CSP-201409-4 最优配餐(100分)
题目:
试题编号: | 201409-4 |
---|---|
试题名称: | 最优配餐 |
时间限制: | 1.0s |
内存限制: | 256.0M |
问题描述: | 问题描述 栋栋最近开了一家餐饮连锁店,提供外卖服务。随着连锁店越来越多,怎么合理的给客户送餐成为了一个急需解决的问题。 栋栋的连锁店所在的区域可以看成是一个n×n的方格图(如下图所示),方格的格点上的位置上可能包含栋栋的分店(绿色标注)或者客户(蓝色标注),有一些格点是不能经过的(红色标注)。 方格图中的线表示可以行走的道路,相邻两个格点的距离为1。栋栋要送餐必须走可以行走的道路,而且不能经过红色标注的点。 送餐的主要成本体现在路上所花的时间,每一份餐每走一个单位的距离需要花费1块钱。每个客户的需求都可以由栋栋的任意分店配送,每个分店没有配送总量的限制。 现在你得到了栋栋的客户的需求,请问在最优的送餐方式下,送这些餐需要花费多大的成本。 输入格式 输入的第一行包含四个整数n, m, k, d,分别表示方格图的大小、栋栋的分店数量、客户的数量,以及不能经过的点的数量。 接下来m行,每行两个整数xi, yi,表示栋栋的一个分店在方格图中的横坐标和纵坐标。 接下来k行,每行三个整数xi, yi, ci,分别表示每个客户在方格图中的横坐标、纵坐标和订餐的量。(注意,可能有多个客户在方格图中的同一个位置) 接下来d行,每行两个整数,分别表示每个不能经过的点的横坐标和纵坐标。 输出格式 输出一个整数,表示最优送餐方式下所需要花费的成本。 样例输入 10 2 3 3 1 1 8 8 1 5 1 2 3 3 6 7 2 1 2 2 2 6 8 样例输出 29 评测用例规模与约定 前30%的评测用例满足:1<=n <=20。 前60%的评测用例满足:1<=n<=100。 所有评测用例都满足:1<=n<=1000,1<=m, k, d<=n^2。可能有多个客户在同一个格点上。每个客户的订餐量不超过1000,每个客户所需要的餐都能被送到。 |
解题思路:
- 这道题采用BFS算法最为方便
- 利用BFS算法求出客户地点到商店的最短路径,乘以点餐数量得出餐费
满分代码:
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
int n,m,k,d;
int sum=0;
long long int ans;//总和
bool visit[1001][1001]={false};
int food[1001][1001]={0};
struct node
{
int x,y,step;
node(){}
node(int X,int Y,int Step){x=X;y=Y;step=Step;}
};
queue<node> q;
struct Orient//四个方向
{
int x,y;
}orient[4]={{-1,0},{1,0},{0,-1},{0,1}};
long long int bfs(int n)//广度优先算法
{
node a,b;
while(!q.empty())
{
a=q.front();
q.pop();
for(int i=0;i<=3;i++)
{
b.x=a.x+orient[i].x;
b.y=a.y+orient[i].y;
b.step=a.step+1;
if(b.x<1||b.x>n||b.y<1||b.y>n||visit[b.x][b.y]) continue;//保证变化后的节点在范围内
if(food[b.x][b.y]>0)
{
ans=ans+(food[b.x][b.y]*b.step);
sum--;
if(sum==0) return ans;
}
visit[b.x][b.y]=true;//已经访问
q.push(b);
}
}
}
int main()
{
int x,y,z;
cin>>n>>m>>k>>d;
while(m--)//输入 商店地点
{
cin>>x>>y;
visit[x][y]=true;
q.push(node(x,y,0));
}
while(k--)//输入 客户地点
{
cin>>x>>y>>z;
if(food[x][y]==0)sum++;
food[x][y]+=z;
}
while(d--)//输入 禁止行动的地点
{
cin>>x>>y;
visit[x][y]=true;
}
bfs(n);
cout<<ans;//输出结果
}