机器学习
文章平均质量分 51
想成为code的大佬
体育生爱网络
展开
-
【vs2022安装libtorch——gpu版本安装过程】
【vs2022安装libtorch——gpu版本安装过程】简单易操作原创 2024-05-10 18:26:24 · 1359 阅读 · 2 评论 -
AI入门之神经网络(10)基于python/pytorch的线性回归学习
基于pytorch的线性回归学习实例“这是我很久前学习写的代码,代码不多但很有意义!算是记录我对AI学习多么感兴趣的一个见证吧!”话不多说,上代码,有注释,跟着写,你也写得出来!# 线性模型# 使用pytorch的一般3步骤# 1)设计模型的输入与输出和前向计算和各层的规模# 2)选择损失函数和优化器# 3)循环训练# ——3.1前向计算# ——3.2反向计算# ——3.3更新权重import torchimport torch.nn as nnimport numpy as np原创 2022-04-20 15:45:25 · 1491 阅读 · 0 评论 -
AI入门之神经网络(8)使用opencv的ML模块中的ANN_MLP训练二分类检测睁眼和闭眼网络
使用opencv的ML模块中的ANN_MLP训练二分类检测睁眼和闭眼的5层网络注释写的很清楚,你跟着注释写,一样可以写出来话不多说直接上代码:#include "opencv2/opencv.hpp"#include "opencv2/ml.hpp"#include<iostream>using namespace std;using namespace cv;using namespace ml;void predict_mat(Mat img, Ptr<ANN_原创 2022-01-17 21:34:55 · 3467 阅读 · 1 评论 -
AI入门之神经网络(6)—初始化3层网络结构的代码(opencv、c++)
鸽了太久没更新博客,怪不好意思的!因为博主在写努力写一个简单的神经网络。为了不让大家对我失望,在此奉献上博主写好的一小段代码!这段代码展示的是网络每层的结构!一个简单的3层网络,每句代码都有注释,相信有点基础的你都能看懂!//网络每层的结构/*声明输入层,中间层,输出层的结构*/ vector<int> layer_number = { 784,100,10 };//3层网络。每层的神经元个数 vector<Mat> layer;//定义网络层 layer.resize原创 2020-12-20 19:42:19 · 376 阅读 · 2 评论 -
AI入门之神经网络(5)—自学笔记
前言:因为本人懒,数学公式不好弄!所以就用笔记照片代替吧!!笔记:原创 2020-12-15 22:01:22 · 160 阅读 · 0 评论 -
AI入门之神经网络(4)—自学笔记
前言学习任何一样东西,最重要的就是基础。此博客是本人学习神经网络的笔记,在这里提供分享,记录自学的心路历程!基础:在这里简单说哈学习神经网络需要的一些数学基础,它包括向量、矩阵、多元微积分、等数学运算。概述人工神经网络的学习过程实际上就是对网络链接权值的调整过程。学习又分为:1有监督学习2无监督学习3增强学习神经网络是一种运算模型,由大量的节点(或称神经元)之间相互连接构成,每个节点代表一种特定的输出函数(称为激活函数)。每两个节点间的连接都代表一个对于通过该连接信号的加权重(权重weig原创 2020-12-06 14:13:47 · 453 阅读 · 0 评论 -
AI入门之机器学习(3)多元线性回归
多元回归:回归中包括2个或者2个以上的自变量。多元线性回归:因变量和自变量之间是线性关系。如图:一元线性模型表示:二维空间的一条直线。二元线性模型(有2个自变量x1和x2)表示:三维空间的一个平面。y=(W1X1)+(W2X2)+b多元线性模型表示:直线在高维空间中的推广(即超平面)。y=W1X1+W2X2+ … +WmXm+b多元线性回归中的估计函数(即模型函数):y^=W1X1+ … WmXm+b其中:X1、X2、X3 … Xm:表示样本的属性(比如:X1..原创 2020-11-05 17:19:14 · 1133 阅读 · 1 评论 -
AI入门之机器学习(1)
机器学习机器学习:从数据中学习,通过算法对新的数据作出识别或者预测通过已知的数据找到模型的过程叫做拟合(即机器通过数据学习的过程)机器学习学习过程:4.1:建立模型(y=wx+b)4.2:学习模型(确定w和b的值)4.3:预测和识别(使用得到的模型进行预测和识别)5.学习算法:从数据中产生模型的算法(如下2点解释)5.1:经典程序设计是:已知规则和数据(x、w、b已知),求解答案(y)5.2:机器学习算法是:已知答案和数据(y、x),求解规则(w、b)机器学习是通过学习算法从数据原创 2020-11-03 19:26:30 · 367 阅读 · 1 评论