Segment 3:Introduction Number Theory——Modular e’th roots:

本文探讨了模e次方根的存在性和计算方法,重点介绍了模质数情况下e次方根的特性及其计算技巧,包括特殊情况下的平方根计算,并讨论了解模合数的e次方根问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Segment 3:Introduction Number Theory——Modular e’th roots:链接

这是整个数论简介的内容,下面是这个的主目录如下,其链接为:https://blog.csdn.net/qq_43479839/article/details/119079620
在这里插入图片描述

在Segment1中,我们讨论了如何解模线性方程【Solving modular linear equations】;更一般地,我们要看如何计算模e次方根【modular e’th roots】

3.1 Modular e’th roots【模e次方根】:最开始都是模质数

在这里插入图片描述
1》 我们现在知道如何去解线性方程了;通过适用求逆的Euclid欧几里得算法来计算一个数的逆,如何在乘以-b;
在这里插入图片描述

2》 问题是:解质数模多项式方程【polynomials modulo primes】,即解Zp(mod p)中的多项式方程;例如在Zp上解下面的多项式;
在这里插入图片描述

1、Modular e’th roots【模e方根的定义】

在这里插入图片描述
1>那么我们固定质数p,我们说c是Zp中的某元素,我们说在Zp中,X满足X的e次方等于c(Xe = c);我们就说x是c的e次方根;
例如:如下在Z11中6的3次方等于7,故6是7的3次方根;
在这里插入图片描述
但是值得注意的是:这些e次方根不一定总是存在;例如:
在这里插入图片描述
下一个问题是:什么时候这些e次方根存在?当我们知道它们存在时,我们能否有效地计算它们?

2、 the easy case【什么时候这些e次方根存在?当我们知道它们存在时,我们能否有效地计算它们?】

在这里插入图片描述
the easy case:当我们想计算某个数的e次方根时,正好有e与p-1互质;
在Zp上;这时c的e次方始终存在;并且有一个非常容易的算法;如下有证明:
证明1:当e与p-1互质时,对Zp中的所有c,c的e次方根总是存在的;证明2:c的e次方等于cd in Zp
在这里插入图片描述
总得来说:就是当e与p-1互质的时候,c的e次方根总是存在,并且容易计算;

3、 一个经典的例子是:e=2;求其平方根的例子(当e与p-1不互质的时候)[2次方–>平方根;3次方->立方根;4次方->4次方根]

在这里插入图片描述
1> 假设p是一个奇质数,事实上,我们关注的一直是奇质数;
在这里插入图片描述

2> 即上张ppt里面求e的次方根的方法在这里并不适用;我们想计算奇质数模(modulo an odd prime);那么当我们工作在奇质数模下,x—>x2平方函数实际上是2到1函数(本质上,这个平方函数也是一个群同态),因为它把x和-x映射到了同一个值x^2。【其中这个-x表示的是x的加法的逆运算x+y mod n =0】
3> 一个从2到1函数的简单例子:
在这里插入图片描述
4> 故有上面的例子可以看到:1,4,9,5,3都是有平方根的;例如4的平方根时2和9;即事实上,除上面的5个元素外,在Z11里的其他元素都没有平方根。
5> 因此引出了一个定义二次剩余【quadratic residue(Q.R.)】:如果x它在Zp中有一个平方根,则我们称x为一个二次剩余;如果它在Zp中没有平方根,我们就称它为二次非剩余【non quadratic residue】;例如4模11是一个二次剩余;9也是二次剩余;
在这里插入图片描述
6> 那么对于一个奇质数p,Zp中的二次剩余一共有多少个?the # of Q.R. in Zp is (p-1)/2+1;【这其中的加1是因为在Zp中还有一个元素0也是二次剩余的,0总是二次剩余的】

4、用Euler’s theorem欧拉定理判断x是否平方根?

在这里插入图片描述
1> Thm:他提出了一个非常清楚的测试这些元素是否是二次剩余的表示,如下
在这里插入图片描述
2> 我们来看一个Z11的简单例子:下面计算了所有Z11里元素的5次幂;
在这里插入图片描述
如上图可以看到X^(p-1)/2的结果始终是1或者-1;那么可以看到1,3,4,9这几个元素是二次剩余;而其他元素不是二次剩余;
3> 值得注意的是:
在这里插入图片描述

4> 有一个定义Legendre Symbol【勒让德符号】:Zp中所有元素的勒让德符号不是1就是-1;
【欧拉定理很好,但是有一个缺点它并不是构造性的定理】,如果我们想计算一个二次剩余的平方根,证明也是基于存在性依据的;那么它只证明了平方根存在,但是并没有展示如何计算我们想要的平方根,

5、如何计算质数模(modulo p)的平方根

在这里插入图片描述
1> 第一种情况是:假设p=3 mod 4;
2> 给一个简单公式用于很容易的计算平方根;如下;因为c的某次幂比次方根容易计算一些。
在这里插入图片描述
为什么可以直接用这个公式:给出证明如下:
在这里插入图片描述
3> 当p=1(mod p);上面的这个公式就不成立了,只用指数(p+1)/4,它不在是整数;但是实际上当p=1 mod 4时,我们也可以计算平方根,尽管要困难一些,我们没有确定性的算法来计算。我们必须使用一个随机算法来找;我想我应该提到,如果有人能证明扩展的黎曼猜想,一个更深层的解析数论里的猜想,
在这里插入图片描述
计算平方根的运行时间是logp的立方

3.2 Solving quadratic equations mod p【讨论解模p的二次方程】:因为我们已经知道怎么计算平方根(square roots)了

在这里插入图片描述
1> 假设给一个二次方程,让找到在Zp中的二次方程的解
在这里插入图片描述
2> 使用Eulid算法计算2a的逆
在这里插入图片描述
3> 先用欧拉定理看b2-4ac的平方根是否存在;也就是看这个元素在(Zp)*上是否是二次剩余,如下
在这里插入图片描述
如果有,就使用计算平方根的这个引理来计算它;
在这里插入图片描述

3.3 Computing e’th roots mod N(N is composite number)【模合数】在模合数下面计算e次方根

在这里插入图片描述
1> 什么时候模N的e次方根存在?如果我们知道它存在我们怎么计算它?我们只知道,计算合数模的e次方根与分解合数【the factorization of composite】一样困难;现在对于一个普通的数e,不知道是否是最优的,但是我们有最好的算法来计算模N的e次方根,需要我们分解这个模,那么实际上每个质数因数的e次方根是容易计算的;我们可以组合所有的这些e次方根来得到合数模N的e次方根;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值