<hdu-OJ>|| 2040_亲和数

亲和数

Time Limit: 2000/1000 MS (Java/Others) 
Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 67865    
Accepted Submission(s): 41135

Problem Description

古希腊数学家毕达哥拉斯在自然数研究中发现,
220的所有真约数(即不是自身的约数)之和为:

1+2+4+5+10+11+20+22+44+55+110=284。

而284的所有真约数为1、2、4、71、 142,加起来恰好为220。
人们对这样的数感到很惊奇,并称之为亲和数。
一般地讲,如果两个数中任何一个数都是另一个数的真约数之和,
则这两个数就是亲和数。

你的任务就编写一个程序,判断给定的两个数是否是亲和数

Input

输入数据第一行包含一个数M,接下有M行,每行一个实例,包含两个整数A,B; 其中 0 <= A,B <= 600000 ;

Output

对于每个测试实例,如果A和B是亲和数的话输出YES,否则输出NO。

Sample Input

2
220 284
100 200

Sample Output

YES
NO


Problem - 2040

Submit

唯二需要注意的就是题主给出的数值范围!
[0, 600000] -> int 类型无法容纳 <- (2^15 - 1)

#include <stdio.h>
#include <stdlib.h>

long fun(long digit)
{
    if (digit == 0) {
        return 0;
    } else if (digit == 1) {
        return 1;
    } else {
        int sum = 1;
        for (int i = 2; i < digit; i++)
        {
            if (digit % i == 0)
                sum += i;
        }

        return sum;
    }
}

int main()
{
    int num = 0;
    long digitA, digitB;
    long sumA, sumB;
    scanf("%d", &num);

    for (int no = 0; no < num; no++)
    {
        scanf("%ld %ld", &digitA, &digitB);
        sumA = sumB = 0;

        sumA = fun(digitA);
        sumB = fun(digitB);
        if (sumA == digitB && sumB == digitA)
            printf("YES\n");
        else printf("NO\n");
    }
}
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页