- 博客(15)
- 收藏
- 关注
原创 4_使用预训练模型 微调训练CIFAR10
注意到VGG最后输出的out_features为1000,这是因为IMAGE NET是一个1000类的数据集,我们最后需要修改一下这个模型结构才能拿来做我们的特定任务。
2023-10-07 20:42:42 467 1
原创 3_使用传统CNN网络训练图像分类模型
使用下面这个CNN网络nn.ReLU(),nn.ReLU(),return out定义我们的网络我们介绍一下的用法,这个库可以辅助我们可视化CNN的计算过程并且在你的input_size出现问题时,给出提示我们当然也可以直接打印model查看,但显然直观效果不好CNN(# dataset# hyper# gpu# dataset使用下面这个CNN网络nn.ReLU(),nn.ReLU(),nn.ReLU(),nn.ReLU(),nn.ReLU(),return out。
2023-10-06 22:03:29 280 1
原创 2_dataset, dataloader
三通道(彩图)训练集:测试集 = 5w : 1w# shape 看维度, 后者有点特别,其类型就是普通的list因此直接求len# shape 看维度, 后者有点特别,其类型就是普通的list因此直接求len。
2023-10-06 16:46:24 546 1
原创 1_torch的基础(Tensor)
当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。生成全0/全1/随机等形式的Tensor,下列介绍几种常见的用法,其他花里胡哨的方法略看即可。(顾名思义,view()仅仅是改变了对这个张量的观察角度)共享内存(其实是同一个。注意view一样是新。
2023-09-13 20:32:08 219 1
原创 深度学习03 评价指标
表示在模型识别为正类的样本中,真正为正类的样本所占的比例。TP(True Positive):【真的正例】,模型预测为正例,实际是正例【预测正确】TN(True Negative):【真的反例】,模型预测为反例,实际是反例【预测正确】一般情况下,Recall越高,说明有更多的正类样本被模型预测正确,模型的效果越好。FP(False Positive):【假的正例】,模型预测为正例,实际是反例。FN(False Negative):【假的反例】,模型预测为反例,实际是正例。即模型的预测结果【概率形式】
2022-10-06 19:53:38 237
原创 【C语言】运算符优先级
运算符优先级最重要的是要搞清楚运算符的优先级和运算顺序。1. 括号是第一2. 单目是其次**【右结合性】**3. 加减乘除余移位5. 关系运算符(≤,≥,<,>\leq,\geq,<,>≤,≥,<,>高于=,!==,!==,!=)6. 位运算与亦或(与 高于 亦或 高于 或)7. 逻辑与和或(与&& 高于 或|| )8. 问号运算符**【右结合性】**9. 赋值运算符(=最高,+= 高于 &= 高于 <<=
2021-10-29 11:55:18 3982 1
原创 【Python加速】Python3强转Python2头文件
#Python 2 and 3 footer by Pajenegod and c1729 #Note because cf runs old PyPy3 version which doesn't have the sped up#unicode strings, PyPy3 strings will many times be slower than pypy2.#There is a way to get around this by using binary strings in PyPy3
2020-12-07 19:11:38 235
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人