Pytorch实现RNN循环神经网络(实例)以及比较不同优化器对应的loss曲线

最近在b站上学习了几个关于pytorch框架视频,特地做了下笔记。

一、线性回归

最简单的一个线性回归问题,拟合一个二次函数,代码很简单,就不赘述了,直接贴上代码:

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt


x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size())  # 加入噪声

x, y = Variable(x), Variable(y)

# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()
# print(x)
# print(x.data)
# print(x.numpy())
# print(x.data.numpy())


class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x


net = Net(1, 10, 1)

plt.ion()  # something about plotting
plt.show()

optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()


for t in range(100):
    prediction = net(x)
    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if t % 5 == 0:
        # plot and show learning process
        plt.cla()
        plt.scatter(x.data.<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值