最近在b站上学习了几个关于pytorch框架视频,特地做了下笔记。
一、线性回归
最简单的一个线性回归问题,拟合一个二次函数,代码很简单,就不赘述了,直接贴上代码:
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # 加入噪声
x, y = Variable(x), Variable(y)
# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()
# print(x)
# print(x.data)
# print(x.numpy())
# print(x.data.numpy())
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
net = Net(1, 10, 1)
plt.ion() # something about plotting
plt.show()
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()
for t in range(100):
prediction = net(x)
loss = loss_func(prediction, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if t % 5 == 0:
# plot and show learning process
plt.cla()
plt.scatter(x.data.<