题目描述
鲁宾逊先生有一只宠物猴,名叫多多。这天,他们两个正沿着乡间小路散步,突然发现路边的告示牌上贴着一张小小的纸条:“欢迎免费品尝我种的花生!――熊字”。
鲁宾逊先生和多多都很开心,因为花生正是他们的最爱。在告示牌背后,路边真的有一块花生田,花生植株整齐地排列成矩形网格(如图11)。有经验的多多一眼就能看出,每棵花生植株下的花生有多少。为了训练多多的算术,鲁宾逊先生说:“你先找出花生最多的植株,去采摘它的花生;然后再找出剩下的植株里花生最多的,去采摘它的花生;依此类推,不过你一定要在我限定的时间内回到路边。”
我们假定多多在每个单位时间内,可以做下列四件事情中的一件:
-
从路边跳到最靠近路边(即第一行)的某棵花生植株;
-
从一棵植株跳到前后左右与之相邻的另一棵植株;
-
采摘一棵植株下的花生;
-
从最靠近路边(即第一行)的某棵花生植株跳回路边。
现在给定一块花生田的大小和花生的分布,请问在限定时间内,多多最多可以采到多少个花生?注意可能只有部分植株下面长有花生,假设这些植株下的花生个数各不相同。
例如在图2所示的花生田里,只有位于(2, 5), (3, 7), (4, 2), (5, 4)(2,5),(3,7),(4,2),(5,4)的植株下长有花生,个数分别为13, 7, 15, 913,7,15,9。沿着图示的路线,多多在2121个单位时间内,最多可以采到3737个花生。
输入输出格式
输入格式:
第一行包括三个整数,M, N和K,用空格隔开;表示花生田的大小为M×N(1≤M,N≤20),多多采花生的限定时间为K(0≤K≤1000)个单位时间。接下来的M行,每行包括N个非负整数,也用空格隔开;第i + 1行的第j个整数P_{ij} (0≤P ij ≤500)表示花生田里植株(i, j)(i,j)下花生的数目,0表示该植株下没有花生。
输出格式:
一个整数,即在限定时间内,多多最多可以采到花生的个数。
输入样例#1:
6 7 21
0 0 0 0 0 0 0
0 0 0 0 13 0 0
0 0 0 0 0 0 7
0 15 0 0 0 0 0
0 0 0 9 0 0 0
0 0 0 0 0 0 0
输出样例#1:
37
输入样例#2:
6 7 20
0 0 0 0 0 0 0
0 0 0 0 13 0 0
0 0 0 0 0 0 7
0 15 0 0 0 0 0
0 0 0 9 0 0 0
0 0 0 0 0 0 0
输出样例#2:
28
#include <iostream>
#include <algorithm>
#include <cmath>
#include <string>
using namespace std;
int m,n,i,j,k=1,t,u,ans;
struct peanuts{//用结构体存坐标和数量及时间。(x,y坐标,time时间,w数量)
int x,y,time,w;
}p[1000001]; //结构体下标用来排序。
int a[21][21];//开个2维数组用来输入数据。
int main(){
cin>>m>>n>>t;
for(i=1;i<=m;i++)
for(j=1;j<=n;j++){
cin>>a[i][j];//输入完成。
if(a[i][j]>0) {//当它下面有花生的时候就存它的数据。
p[k].w=a[i][j];
p[k].x=i;
p[k].y=j;
k++;
}
}
for(i=1;i<k;i++)
for(j=i+1;j<=k;j++)
if(p[i].w<p[j].w) swap(p[i],p[j]);//选择排序(用下标来排序,数量多的按题意先摘)。
for(i=1;i<=k;i++){//枚举每个花生。
u=p[i].x;//返回的路程,由于我们要考虑多多采花生返回,而返回的路程就是深度即x,如果加上这个x可以按时返回的话就采这个花生。
if(i==1) p[i].time=p[i].x+1; //第一个花生是不同的,因为多多一开始可以跳到第一个最多花生的所在列。
else p[i].time=p[i-1].time+abs(p[i].x-p[i-1].x)+abs(p[i].y-p[i-1].y)+1;//不是第一个的话就加上与前一个的坐标差再加采摘时间。
if (p[i].time+u<=t) ans+=p[i].w;//如果数据合法那么就把花生数加上。
}
cout<<ans;//输出最多花生数即可。
return 0;
}