题干
给定一个二维平面,平面上有 n 个点,求最多有多少个点在同一条直线上。
示例 1:
输入: [[1,1],[2,2],[3,3]]
输出: 3
解释:
^
|
| o
| o
| o
+------------->
0 1 2 3 4
示例 2:
输入: [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
输出: 4
解释:
^
|
| o
| o o
| o
| o o
+------------------->
0 1 2 3 4 5 6
想法
点斜式,遍历每一个点,确定一个点后遍历其他点,求出斜率,斜率相同的个数为过这个点直线数。
再更新最大的直线数即可
要点是计算机的精度问题,可以参考
传送门
代码
class Solution {
public int maxPoints(int[][] points) {
if (points.length < 3) {
return points.length;
}
int res = 0;
//遍历每个点
for (int i = 0; i < points.length; i++) {
int duplicate = 0;
int max = 0;//保存经过当前点的直线中,最多的点
HashMap<String, Integer> map = new HashMap<>();
for (int j = i + 1; j < points.length; j++) {
//求出分子分母
int x = points[j][0] - points[i][0];
int y = points[j][1] - points[i][1];
if (x == 0 && y == 0) {
duplicate++;
continue;
}
//进行约分
int gcd = gcd(x, y);
x = x / gcd;
y = y / gcd;
String key = x + "@" + y;
map.put(key, map.getOrDefault(key, 0) + 1);
max = Math.max(max, map.get(key));
}
//1 代表当前考虑的点,duplicate 代表和当前的点重复的点
res = Math.max(res, max + duplicate + 1);
}
return res;
}
private int gcd(int a, int b) {
while (b != 0) {
int temp = a % b;
a = b;
b = temp;
}
return a;
}
}
class Solution {
int result = 0;
public int maxPoints(int[][] points) {
int len = points.length;
if (len < 3) {
return len;
}
for (int i = 0; i < len - 1; i++) {
int x = points[i + 1][0] - points[i][0];
int y = points[i + 1][1] - points[i][1];
if (x != 0 || y != 0) {
maxPointsHelper(points, x, y, i);
}
}
//怎么解决的重复点问题:
//如果数组中所有点都相等,返回数组长度
//只要有不相同的两个点,就能进入下面的方法,就能统计到所有的点
return result == 0 ? len : result;
}
private void maxPointsHelper(int[][] points, long a, long b, int base) {
int path = 2;
int len = points.length;
for (int i = 0; i < len; i++) {
if (i != base && i != base + 1) {
if ((points[i][1] - points[base][1]) * a == (points[i][0] - points[base][0]) * b)
{
path++;
}
}
}
result = Math.max(result, path);
}
}