题干
是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例 1:
输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
想法
显然就是找到住整个数组的最大和,但是两个元素不能连续。
显然使用动态规划
设dp[i]表示0到i位置的最大值
那么dp[i]=Math.max(dp[i-1],dp[i-2]+nums[i]);
坐到这儿显然发现边界条件,需要初始化dp[0]和dp[1];
显然
dp[0]=nums[0];
dp[1]= Math.max(nums[1],nums[0]);
那就可以直接写代码了
看Java代码
Java代码
package daily;
public class Rob {
public int rob(int[] nums) {
int len=nums.length;
//空
if(len==0){
return 0;
}
//只有一个
if(len==1){
return nums[0];
}
//有俩
if(len==2){
return Math.max(nums[0],nums[1]);
}
//动态规划,不能相邻
int [] dp=new int[len];
dp[0]=nums[0];
dp[1]= Math.max(nums[1],nums[0]);
for (int i=2;i<len;i++){
dp[i]=Math.max(dp[i-1],dp[i-2]+nums[i]);
}
return dp[len-1];
}
public static void main(String[] args){
Rob rob=new Rob();
int[] nums1={1,2,3,1};
int[] nums2={2,7,9,3,1};
System.out.println(rob.rob(nums1));
System.out.println(rob.rob(nums2));
}
}