- dfs是一种通过回溯的搜索算法
算法流程
- 进入状态1,列出所有的可能,然后以此选择每一种可能,然后进入下一个状态
- 判断当前状态结束没有,如果结束则返回上一个状态
例题
- 数组的全排列
Description
输入一个自然数N(1<=N<=9),从小到大输出用1~N组成的所有排列,也就说全排列。例如输入3则输出
123
132
213
231
312
321
Input
输入一个自然数N(1<=N<=9)
Output
N的全排列,每行一个
Sample Input
2
Sample Output
12
21
- 代码
一定要有一个标记的数组,来标记哪张牌没有放过
#include <iostream>
using namespace std;
int a[10] = {0};
int book[10] = {0};
int n;
void dsf(int step){// step 表示站在第几个盒子的面前
if(step == n){
// 输出一种排列
for(int i=0;i<n;i++){
cout << a[i]+1 ;
}
cout << endl;
return ;
}
for(int i=0;i<n;i++){
// 判断当前扑克牌是否在手中
if(book[i]==0){
// 开始尝试使用扑克牌
a[step] = i;
book[i] = 1; // 标记该扑克牌已经使用过了
dsf(step+1); // 考虑下一步
book[i] = 0; // 收回该扑克牌
}
}
return;
}
int main() {
cin >> n;
dsf(0); // 最初站在第0个盒子的面前
return 0;
}