进制
二进制
用0、1两个数字来表示数值,这就是二进制(Binary)
二进制,是计算技术中广泛采用的一种数制,由德国数理哲学大师莱布尼茨于 1679 年发明。二进制数据是用 0 和 1 两个数码来表示的数。它的基数为 2,进位规则是“逢二进一”。数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。
二进制对应两种状态,广泛应用于电子科学。比如:可以对应电子器件的开关状态、对应信号电压状态(+5V 等价于逻辑"1",0V 等价于逻辑"0")、对应卡带是否打孔状态、电磁存储(磁体状态:南为 0,北为 1)等等。
二进制广泛应用于我们生活的方方面面。比如,广泛使用的摩尔斯电码,它由两种基本信号组成:短促的点信号“·”,读“滴”;保持一定时间的长信号“—”,读“嗒”。然后,组成了 26 个字母,从而拼写出相应的单词。
八进制
同样的,有二进制就有八进制有 0~7 共8个数字,基数为8,加法运算时逢八进一,减法运算时借一当八。
十六进制
除了二进制和八进制,十六进制也经常使用,甚至比八进制还要频繁。
十六进制中,用A来表示10,B表示11,C表示12,D表示13,E表示14,F表示15,因此有 0~F 共16个数字,基数为16,加法运算时逢16进1,减法运算时借1当16。
进制转换
十进制转二进制
十进制整数转换为二进制整数采用"除 2 取余,逆序排列"法
十进制数 29 转成二进制就是:11101
二进制转十进制
二进制转十进制采用“权相加法”。
二进制和八进制相互转换
二进制整数转换为八进制整数时,每三位二进制数字转换为一位八进制数字,运算的顺序是从低位向高位依次进行,高位不足三位用零补齐。
二进制整数 1110111100 转换为八进制的结果为 1674。
八进制整数转换为二进制整数时,思路是相反的,每一位八进制数字转换为三位二进制数字,运算的顺序也是从低位向高位依次进行。
八进制整数 2743 转换为二进制的结果为 10111100011
二进制和十六进制相互转换
二进制整数转换为十六进制整数时,每四位二进制数字转换为一位十六进制数字,运算的顺序是从低位向高位依次进行,高位不足四位用零补齐。
二进制整数 10 1101 0101 1100 转换为十六进制的结果为 2D5C
十六进制整数转换为二进制整数时,思路是相反的,每一位十六进制数字转换为四位二进制数字,运算的顺序也是从低位向高位依次进行。
十六进制整数 A5D6 转换为二进制的结果为 1010 0101 1101 0110