棋盘问题——DFS(深度优先搜索) 模板题

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

input

输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。

output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)

Sample Input

2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1

Sample Output

2
1

 #include <iostream>
 #include <cstdio>
 #include <cstring>
 using namespace std;
 char mp[20][20]; //创建一张图,来访问节点信息
 int visit[20]; //用来标记访问过的节点
 int n, k;
 int ans; //用来记录方案数
void DFS(int x, int y){//y用来记录用的棋子数 
	  if(y >= k){ //当y=k时,此方案结束,方案书+1 ,然后结束此次DFS 
	   ans++;
	   return;
	 }
  
	 for(int i=x; i<n; ++i){ //从参数所在的行数开始执行 
	   	for(int j=0; j<n; ++j){ //表示列数 
	   	 	if(!visit[j] && mp[i][j]=='#'){ 
	    	 	visit[j] = true;//当该点没被访问过并且合法则将这一列标记 
	    	 	DFS(i+1,y+1);//访问下一行 并且棋子数+1 
	   	 	 visit[j] = false; //当所有棋子访问完以后,再将所有标记过的点重新变成0 
	  	  	}
	  	 }
  	}
  
  return;
 } 
 int main()
 {
	  while(cin>>n>>k){
		  if(n==-1 && k==-1)
		   	 break;
		  memset(visit, 0, sizeof(visit));
		  for(int i=0; i<n; ++i){
		   	cin>>mp[i];
		  }
		  ans = 0;
		  DFS(0,0);
		  cout<<ans<<endl;
	 }
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值