在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)
Sample Input
2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1
Sample Output
2
1
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
char mp[20][20]; //创建一张图,来访问节点信息
int visit[20]; //用来标记访问过的节点
int n, k;
int ans; //用来记录方案数
void DFS(int x, int y){//y用来记录用的棋子数
if(y >= k){ //当y=k时,此方案结束,方案书+1 ,然后结束此次DFS
ans++;
return;
}
for(int i=x; i<n; ++i){ //从参数所在的行数开始执行
for(int j=0; j<n; ++j){ //表示列数
if(!visit[j] && mp[i][j]=='#'){
visit[j] = true;//当该点没被访问过并且合法则将这一列标记
DFS(i+1,y+1);//访问下一行 并且棋子数+1
visit[j] = false; //当所有棋子访问完以后,再将所有标记过的点重新变成0
}
}
}
return;
}
int main()
{
while(cin>>n>>k){
if(n==-1 && k==-1)
break;
memset(visit, 0, sizeof(visit));
for(int i=0; i<n; ++i){
cin>>mp[i];
}
ans = 0;
DFS(0,0);
cout<<ans<<endl;
}
return 0;
}