适合初步练习PAT乙级——(1063) 计算谱半径
在数学中,矩阵的“谱半径”是指其特征值的模集合的上确界。换言之,对于给定的 n 个复数空间的特征值 { a1+b1i,⋯,an+bni },它们的模为实部与虚部的平方和的开方,而“谱半径”就是最大模。
现在给定一些复数空间的特征值,请你计算并输出这些特征值的谱半径。
输入格式:
输入第一行给出正整数 N(≤ 10 000)是输入的特征值的个数。随后 N 行,每行给出 1 个特征值的实部和虚部,其间以空格分隔。注意:题目保证实部和虚部均为绝对值不超过 1000 的整数。
输出格式:
在一行中输出谱半径,四舍五入保留小数点后 2 位。
输入样例:
5
0 1
2 0
-1 0
3 3
0 -3
输出样例:
4.24
#include<iostream>
#include<cmath>
using namespace std;
int main() {
int n;
cin >> n;
float max = 0;
for (int i = 0; i < n; i++) {
float a, b, ans;
cin >> a >> b;
ans = sqrt(a*a + b * b);
max = max < ans ? ans : max;
}
printf("%0.2f", max);
return 0;
}
思路:
用max储存最大的谱半径,输入实部a和虚部b,计算当前的谱半径ans,然后与max相比,如果当前的ans比max要大,则将ans的值赋予max,接着下一步循环。