题目:给定一个数字,按照如下规则翻译成字符串:0翻译成“a”,1翻译成“b”…25翻译成“z”。一个数字有多种翻译可能,例如12258一共有5种,分别是bccfi,bwfi,bczi,mcfi,mzi。实现一个函数,用来计算一个数字有多少种不同的翻译方法。
思路:
下面我们从自上而下和自下而上两种角度分析这道题目,以12258为例:
自上而下,从最大的问题开始,递归 :
12258
/ \
b+2258 m+258
/ \ / \
bc+258 bw+58 mc+58 mz+8
/ \ \ \ \
bcc+58 bcz+8 bwf+8 mcf+8 mzi
/ \ \ \
bccf+8 bczi bwfi mcfi
/
bccfi
有很多子问题被多次计算,比如258被翻译成几种这个子问题就被计算了两次。
自下而上,动态规划,从最小的问题开始 :
f(r)表示以r为开始(r最小取0)到最右端所组成的数字能够翻译成字符串的种数。对于长度为n的数字,f(n)=0,f(n-1)=1,求f(0)。
递推公式为 f(r-2) = f(r-1)+g(r-2,r-1)*f(r);
其中,如果r-2,r-1能够翻译成字符,则g(r-2,r-1)=1,否则为0。
因此,对于12258:
f(5) = 0
f(4) = 1
f(3) = f(4)+0 = 1
f(2) = f(3)+f(4) = 2
f(1) = f(2)+f(3) = 3
f(0) = f(1)+f(2) = 5
基于以上分析,java参考代码如下:
package chapter5;
public class P231_TranslateNumbersToStrings {
public static int getTranslationCount(int number){
if(number<0)
return 0;
if(number==1)
return 1;
return getTranslationCount(Integer.toString(number));//toString()将整型数字转换为字符串类型
}
//动态规划,从右到左计算。
//f(r-2) = f(r-1)+g(r-2,r-1)*f(r);
//如果r-2,r-1能够翻译成字符,则g(r-2,r-1)=1,否则为0
public static int getTranslationCount(String str){
int f2=1,f1=1,n=str.length();
for(int i=n-2;i>=0;i--){
int g=Integer.parseInt(str.charAt(i)+""+str.charAt(i+1))<26?1:0;
int temp=f2;
f2=f2+g*f1;
f1=temp;
}
return f2;
}
public static void main(String[] args) {
System.out.println(getTranslationCount(-10)); //0
System.out.println(getTranslationCount(1234)); //3
System.out.println(getTranslationCount(12258)); //5
}
}
测试用例:
a.功能测试(只有一位数字;包含多位数字)。
b.特殊输入测试(负数;0;包含25、26的数字)。