码农ZZK的博客

私信 关注
MarDino
码龄2年
  • 95,183
    被访问量
  • 115
    原创文章
  • 45,025
    作者排名
  • 86
    粉丝数量
  • 于 2018-12-14 加入CSDN
获得成就
  • 获得114次点赞
  • 内容获得64次评论
  • 获得265次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #神经网络#图像处理
TA的专栏
  • 深度学习
    24篇
  • 飞桨框架
    4篇
  • LeetCode
    27篇
  • 数据结构
    16篇
  • 面试
    23篇
  • Pytorch
    4篇
  • 开发
    1篇
  • C++
    6篇
  • MXNET
    8篇
  • Keras
    4篇
  • Opencv
    1篇
  • 安全
    5篇
  • Python
    38篇
  • 爬虫
    8篇
  • 机器学习
    23篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

Unormalized Resnet

介绍现在BN层被广泛应用于图像分类网络,批量归一化的特性能保证信号不会过大,能良好的传播到下一层神经网络当中。但它也有一些缺点,如:依赖bachsize,当batchsize较小时,效果不好破坏一个batch内样本之间的独立性带来额外的计算和显存开销导致奇怪的Bug本文试图从信号传播可视化,合适的权重初始化等角度,摆脱CNN对BN层的依赖,保证每一层网络的信号传播(不至于信号幅度过大,爆炸)。前排提醒:个人觉得这篇文章十分有意思,但是涉及到探索CNN机制避免不了繁重的公式推导,希望各位能有
原创
18阅读
0评论
0点赞
发布博客于 11 天前

自动微分

绍计算机程序的求导机制分为四种人工计算出导数,并写成代码形式数值计算微分,即取极限求导数符号微分,使用表达式来计算导数自动微分比如下面的程序所示import numpy as npdef sigmoid(x): """ Compute sigmoid Function """ return 1 / (1+np.exp(-x))def sigmoid_grad(x): return np.exp(-x) / np.square(1 + np
原创
53阅读
0评论
0点赞
发布博客于 1 月前

Vision transformer

太长不看版Vision Transformer将CV和NLP领域知识结合起来,对原始图片进行分块,展平成序列,输入进原始Transformer模型的编码器Encoder部分,最后接入一个全连接层对图片进行分类。在大型数据集上表现超过了当前SOTA模型前言当前Transformer模型被大量应用在NLP自然语言处理当中,而在计算机视觉领域,Transformer的注意力机制attention也被广泛应用,比如Se模块,CBAM模块等等注意力模块,这些注意力模块能够帮助提升网络性能。而我们的工作展示了不需
原创
973阅读
0评论
1点赞
发布博客于 3 月前

tensorflow2使用CUDA10.2

tf2是不支持CUDA10.2的,但我们可以做一个软链接,链接到10.1上可参考[解决]tensorflow-gpu2.3与CUDA10.2的兼容问题 dlerror: libcudart.so.10.1: cannot open shared object file亲测成功
原创
292阅读
0评论
0点赞
发布博客于 3 月前

2020-11-17

Beam Searchbeam search 束搜索是基于穷举搜索和贪心搜索的折中搜索方案穷举搜索假设我有 A B C 三个词需要解码我们可以穷尽所有排列组合,一共是27种,因为3个时间步,每个时间步都有3个选择,组合有:AAA AAB AAC ABA ACA 。。。。这种搜索带来的问题在于时间复杂度过大贪心搜索贪心搜索仅考虑当前状态下最优的组合我们先看T1时间步,发现是A概率最高。于是我们以A为基础继续看T2时间步,组合有: AA, AB, AC,然后发现是与B组合概率高,因此以A
原创
62阅读
0评论
0点赞
发布博客于 3 月前

HS-Resnet

太长不看版这是最近百度的一篇网络结构设计文章,该网络结构是手工设计得来,主要改进在对特征图多级划分卷积,拼接,提升了网络的精度,同时也降低了推理时间。个人感觉是res2net,ghostnet的结合,并且训练阶段没引入过多的trick,最后的实验结果很惊艳,或许是炼丹的一个好选择。前言在该工作内,我们发现多层级的特征对视觉任务效果提升明显,因此设计了一个即插即用的多级分离模块(Hierarchical-Split Block)。HS-Block包含了多个层级特征图的分离和拼接,我们将其替换到Resn
原创
281阅读
2评论
0点赞
发布博客于 3 月前

F3net 商汤Deepfake检测模型

前言这篇论文是商汤团队在ECCV2020的一个工作:Thinking in Frequency: Face Forgery Detection by Mining Frequency-aware Clues,通过引入两种提取频域特征的方法FAD (Frequency-Aware Decomposition) 和LFS (Local Frequency Statistics) ,并设计了一个 MixBlock 来融合双路网络的特征,从而在频域内实现对Deepfake的检测介绍随着Deepfake技术不断
原创
263阅读
0评论
0点赞
发布博客于 4 月前

learning in the frequency domain

前言传统的CNN都是在图像的空间域上进行特征学习,受限于显存限制,CNN的输入图像不能太大,最常见的尺寸就是224x224。而常用的预处理(Resize),以及CNN中的下采样,会比较粗暴的损失数据的信息。阿里达摩院联合亚利桑那州大学提出了基于DCT变换的模型,旨在通过DCT变换保留更多原始图片信息,并减少CPU与GPU的通信带宽,最后的实验也证明该模型的有效性原始论文地址:Learning in the Frequency Domain代码地址 DCTNet介绍大部分CNN模型只能接受 224x
原创
118阅读
0评论
0点赞
发布博客于 5 月前

Repulsion Loss解决行人遮挡问题

介绍本文是旷视研究院CVPR2018上的一篇工作,在检测行人任务中,由于行人之间互相遮挡,导致传统的检测器容易受遮挡的干扰,给出错误的预测框。研究人员先是从数据集上进行分析,定量描述了遮挡对行人检测带来的影响。后面受吸引,排斥的启发,提出了Repulsion Loss来尽可能让预测框贴近真实框的同时,又能与同类排斥,进而避免误检。问题引入常见的遮挡问题可以再被细分为主要两类类间遮挡,即目标被其他类遮挡住。举个例子,一个行人遛狗,人体下半部分就可能被狗狗遮住类内遮挡,目标物体被同类遮挡住,
原创
225阅读
0评论
2点赞
发布博客于 6 月前

计算图

前言相信各位做算法的同学都很熟悉框架的使用,但未必很清楚了解我们跑模型的时候,框架内部在做什么,比如怎么自动求导,反向传播。这一系列细节虽然用户不需要关注,但如果从一道算法题开始相信有算法基础的同学,应该都知道迪杰斯特拉的双栈算术表达式求和这个经典算法。他的原理是利用两个栈分别存放运算数,操作。根据不同的情况弹出栈里的元素,并进行运算,我们可以具体看下图这里讨论的是最简单的情况,我们根据操作符的优先级,以及括号的种类(左括号和右括号),分别进行运算,然后得到最终结果。神经网络里怎么做?在神经网
原创
79阅读
0评论
0点赞
发布博客于 6 月前

Rethinking ImageNet Pre-training

前言这篇文章是何恺明组做的一个偏实验的工作,主要是探究ImageNet预训练的模型,在迁移到其他任务比如目标检测,分割等会不会比从头训练模型的要更好。可以总结一下就是在数据集充分的条件下,各个任务里,从头训练的效果并不比在ImageNet预训练过的要差从头训练的模型需要更多的迭代次数,才能追上预训练模型Finetune的结果ImageNet预训练的作用更多的是加速模型收敛,但不意味最后模型表现的好当迁移数据量极少时,ImageNet预训练过的模型表现的要比从头训练的模型要好很多摘要如今各个
原创
67阅读
0评论
0点赞
发布博客于 6 月前

Win10和Ubuntu20双系统安装

前言笔者前期搞了一台新主机增加开发需求,想用Linux写代码,win打游戏。配好的主机送过来已经自带win10系统了,下面废话不多说,直接装机制作启动盘首先下rufus,其他启动盘制作软件也可以然后我们去下载Ubuntu Linux镜像,这里建议去国内的镜像站下载http://mirrors.ustc.edu.cn/ubuntu-releases/下载完后,我们使用rufus把镜像录到U盘了,录之前会需要格式化U盘安装步骤https://www.bilibili.com/video/BV11
原创
304阅读
0评论
0点赞
发布博客于 6 月前

vscode远程连接ssh

原创
137阅读
0评论
0点赞
发布博客于 7 月前

PP-YOLO

摘要目标检测是计算机视觉一个重要的领域。而目标检测算法的准确性和推理速度不可兼得,我们工作旨在通过tricks组合来平衡目标检测器的性能以及速度。考虑到yolo3的广泛应用,我们考虑在yolo3基础模型训练得到一个更快,准确率更高的模型,即PP-YOLO介绍最近出现了yolov4,5模型,这些模型也是基于yolo3算法改进得来。但PPYOLO并不像yolov4探究各种复杂的backbone和数据增广手段,也不是靠nas暴力搜索得到一个结构。我们在resnet骨干网络系列,数据增广仅靠mixup的条件下
原创
3168阅读
1评论
2点赞
发布博客于 7 月前

WSCL

摘要近些年来,因为弱监督目标检测仅需要图片分类级别的label受到了人们广泛的关注,其代价是准确率一定程度的下降。本文提出了一个简单而有效的弱监督协作目标检测框架,基于共享部分特征,增强预测相关性来同时训练强,弱监督两个检测网络。弱监督目标检测网络采取类似WSDDN的结构,强监督目标检测网络采取类似Faster-RNN的结构。最终在数据集上证明了框架的有效性补充WSDDNWSDDN全称是Weakly Supervised Deep Detection Network,即弱监督深度检测网络。只依靠im
原创
72阅读
0评论
0点赞
发布博客于 7 月前

pip切换源

原创
29阅读
0评论
0点赞
发布博客于 7 月前

力扣785 判断二分图

785. 判断二分图给定一个无向图graph,当这个图为二分图时返回true。如果我们能将一个图的节点集合分割成两个独立的子集A和B,并使图中的每一条边的两个节点一个来自A集合,一个来自B集合,我们就将这个图称为二分图。graph将会以邻接表方式给出,graph[i]表示图中与节点i相连的所有节点。每个节点都是一个在0到graph.length-1之间的整数。这图中没有自环和平行边:graph[i] 中不存在i,并且graph[i]中没有重复的值。示例 1:输入: [[1,3]
原创
53阅读
0评论
0点赞
发布博客于 7 月前

力扣96 不同的二叉搜索树

96. 不同的二叉搜索树给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?示例:输入: 3输出: 5解释:给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2
原创
53阅读
0评论
0点赞
发布博客于 7 月前

力扣174

174. 地下城游戏一些恶魔抓住了公主(P)并将她关在了地下城的右下角。地下城是由 M x N 个房间组成的二维网格。我们英勇的骑士(K)最初被安置在左上角的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值
原创
63阅读
0评论
0点赞
发布博客于 7 月前

力扣315

315. 计算右侧小于当前元素的个数给定一个整数数组 nums,按要求返回一个新数组 counts。数组 counts 有该性质: counts[i] 的值是 nums[i] 右侧小于 nums[i] 的元素的数量。示例:输入:[5,2,6,1]输出:[2,1,1,0]解释:5 的右侧有 2 个更小的元素 (2 和 1)2 的右侧仅有 1 个更小的元素 (1)6 的右侧有 1 个更小的元素 (1)1 的右侧有 0 个更小的元素这道题一开始被困难难度给吓到了我们先想用暴力法,
原创
41阅读
0评论
0点赞
发布博客于 7 月前

SmallBigNet

简介时空卷积常用于视频分类任务,然而其有限的视野使其影响网络对视频数据的表征能力为了解决该问题,我们提出了一种SmallBig网络,它分为small biew和big view两个分支其中small view用来捕获核心语义,big view用来捕获上下文语义。同时big view这一分支能给small view更大的感受野。最后SmallBigNet在模型大小近似于常规2D CNN下,得到了3D CNN的准确率介绍时空卷积只对时间维度上有大感受野,因此会对空间信息提取不充分,甚至会引入噪声比
原创
182阅读
0评论
0点赞
发布博客于 7 月前

力扣32 最长有效括号

32. 最长有效括号给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度。示例 1:输入: "(()"输出: 2解释: 最长有效括号子串为 "()"示例 2:输入: ")()())"输出: 4解释: 最长有效括号子串为 "()()"这是道困难题,看到了括号,我第一想到的就是栈,因为对于匹配括号的题,栈这种数据结构是非常好用的。其次最长有效,这几个字在动态规划题目中经常遇见,所以不妨两者都可以考虑对应解法动态规划我们假设DP数组表示以当前字符作为结尾
原创
67阅读
0评论
0点赞
发布博客于 7 月前

力扣378

"""378. 有序矩阵中第K小的元素给定一个 n x n 矩阵,其中每行和每列元素均按升序排序,找到矩阵中第 k 小的元素。请注意,它是排序后的第 k 小元素,而不是第 k 个不同的元素。示例:matrix = [ [ 1, 5, 9], [10, 11, 13], [12, 13, 15]],k = 8,返回 13。"""第一个我们很容易想到将二维数组展开成一维,然后直接进行排序,这里就不多再赘述思路2,我们可以把此题看作是合并K个有序列表,而他在
原创
105阅读
0评论
0点赞
发布博客于 7 月前

力扣 731最长重复子数组

"""718. 最长重复子数组给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。示例 1:输入:A: [1,2,3,2,1]B: [3,2,1,4,7]输出: 3解释:长度最长的公共子数组是 [3, 2, 1]。"""这题上来直觉告诉我是利用动态规划的思想遇到这两个数组的,通常是用二维DP数组我们可以简单画个表看看 3 2 1 4 71 0 0 1 0 02 0 1 0 0 03 1 0 0 0 02 0 2 0 0 01 0 0 3
原创
77阅读
0评论
0点赞
发布博客于 8 月前

力扣1014

"""1014. 最佳观光组合给定正整数数组 A,A[i] 表示第 i 个观光景点的评分,并且两个景点 i 和 j 之间的距离为 j - i。一对景点(i < j)组成的观光组合的得分为(A[i] + A[j] + i - j):景点的评分之和减去它们两者之间的距离。返回一对观光景点能取得的最高分。示例:输入:[8,1,5,2,6]输出:11解释:i = 0, j = 2, A[i] + A[j] + i - j = 8 + 5 + 0 - 2 = 11"""from
原创
63阅读
0评论
0点赞
发布博客于 8 月前

力扣1300

"""1300. 转变数组后最接近目标值的数组和给你一个整数数组 arr 和一个目标值 target ,请你返回一个整数 value ,使得将数组中所有大于 value 的值变成 value 后,数组的和最接近 target (最接近表示两者之差的绝对值最小)。如果有多种使得和最接近 target 的方案,请你返回这些整数中的最小值。请注意,答案不一定是 arr 中的数字。示例 1:输入:arr = [4,9,3], target = 10输出:3解释:当选择 value
原创
70阅读
0评论
0点赞
发布博客于 8 月前

剑指offer 46题 把数字翻译成字符串

"""面试题46. 把数字翻译成字符串给定一个数字,我们按照如下规则把它翻译为字符串:0 翻译成 “a” ,1 翻译成 “b”,……,11 翻译成 “l”,……,25 翻译成 “z”。一个数字可能有多个翻译。请编程实现一个函数,用来计算一个数字有多少种不同的翻译方法。示例 1:输入: 12258输出: 5解释: 12258有5种不同的翻译,分别是"bccfi", "bwfi", "bczi", "mcfi"和"mzi""""class Solution: def tran
原创
94阅读
0评论
0点赞
发布博客于 8 月前

力扣837 新21点

"""837. 新21点爱丽丝参与一个大致基于纸牌游戏 “21点” 规则的游戏,描述如下:爱丽丝以 0 分开始,并在她的得分少于 K 分时抽取数字。抽取时,她从 [1, W] 的范围中随机获得一个整数作为分数进行累计,其中 W 是整数。每次抽取都是独立的,其结果具有相同的概率。当爱丽丝获得不少于 K 分时,她就停止抽取数字。 爱丽丝的分数不超过 N 的概率是多少?示例 1:输入:N = 10, K = 1, W = 10输出:1.00000说明:爱丽丝得到一张卡,然后停止。
原创
122阅读
0评论
0点赞
发布博客于 8 月前

力扣739 每日温度

739. 每日温度根据每日 气温 列表,请重新生成一个列表,对应位置的输出是需要再等待多久温度才会升高超过该日的天数。如果之后都不会升高,请在该位置用 0 来代替。例如,给定一个列表 temperatures = [73, 74, 75, 71, 69, 72, 76, 73],你的输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]。提示:气温 列表长度的范围是 [1, 30000]。每个气温的值的均为华氏度,都是在 [30, 100] 范围内的整数一开始我他吗是没看懂题的,不知道
原创
149阅读
0评论
0点赞
发布博客于 9 月前

力扣101 对称二叉树

LEETCODE 101 对称二叉树给定一个二叉树,检查它是否是镜像对称的。 例如,二叉树 [1,2,2,3,4,4,3] 是对称的。 1 / \ 2 2 / \ / \3 4 4 3 但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的: 1 / \ 2 2 \ \ 3 3class TreeNode: def __init__(self, x): self.va
原创
70阅读
0评论
0点赞
发布博客于 9 月前

LEETCODE 84 柱状图中最大的矩形

84. 柱状图中最大的矩形给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。求在该柱状图中,能够勾勒出来的矩形的最大面积。这个问题和接雨水那道很相似,第一反应是使用单调栈做。怎么确定当前矩形最大面积呢?我们定义一个单调递增的栈,当新来的元素小于栈顶元素,那么栈顶元素对应的矩形面积是可以确定的,因为栈顶大于其左右两边的元素(这里我们假设右边元素是新加的元素)计算完面积后,弹出栈顶元素,若新栈顶仍然大于新元素,那么重复上面的步骤,我们也可以确定新栈顶对应
原创
75阅读
0评论
0点赞
发布博客于 9 月前
记一次平安科技电话面经
发布Blink于 9 月前

力扣5:最长回文子串

5. 最长回文子串给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。示例 1:输入: "babad"输出: "bab"注意: "aba" 也是一个有效答案。示例 2:输入: "cbbd"输出: "bb"常规的暴力法就是遍历各个子串,并且判断子串是否是回文串,这样时间复杂度为O(n^3)接下来我们看动态规划做法我们假设一个dp数组,dp[i][j]表示s[i…j]是否为回文串由于回文子串具备天然的状态转移特性当两头字母相同时,去掉两头字母
原创
79阅读
0评论
0点赞
发布博客于 9 月前

力扣1371

"""1371. 每个元音包含偶数次的最长子字符串给你一个字符串 s ,请你返回满足以下条件的最长子字符串的长度:每个元音字母,即 'a','e','i','o','u' ,在子字符串中都恰好出现了偶数次。示例 1:输入:s = "eleetminicoworoep"输出:13解释:最长子字符串是 "leetminicowor" ,它包含 e,i,o 各 2 个,以及 0 个 a,u 。示例 2:输入:s = "leetcodeisgreat"输出:5解释:最长子字符串是 "l
原创
135阅读
0评论
0点赞
发布博客于 9 月前

记一次平安科技电话面经

前言之前投了很多次平安科技的实习,但都没消息回复。五一前平安科技hr打来电话,让我参与python开发面试(因为自己不确定能不能做算法,所以投递方向填了两个分别是python开发和算法实习生),后续她会发你一个邮件确认面试,十分感谢这个hr又把我捞回到了算法里面,另外需要做一份自我介绍的ppt,介绍项目博客经历什么的,回复给她即可。总的来说问的十分基础且深入,面试官不会特别刁难你,但是问的问题都...
原创
697阅读
0评论
1点赞
发布博客于 9 月前

LEETCODE力扣股票问题总结

在力扣网站中,最常见的动态规划问题就是股票系列的问题这里我把题号给放上来121122123188309714股票问题总思路既然涉及到动态规划,那么我们肯定是需要根据题意来定义状态转移方程的对于股票的操作,我们一共有3个,分别是买,卖,不交易我们可以定义一个三维的数组,维度分别代表天数,交易次数,状态(用0,1代表没持有股票还是持有股票)dp[i][k][0] = max(...
原创
303阅读
0评论
0点赞
发布博客于 9 月前

10.10数字流的秩

面试题 10.10. 数字流的秩假设你正在读取一串整数。每隔一段时间,你希望能找出数字 x 的秩(小于或等于 x 的值的个数)。请实现数据结构和算法来支持这些操作,也就是说:实现 track(int x) 方法,每读入一个数字都会调用该方法;实现 getRankOfNumber(int x) 方法,返回小于或等于 x 的值的个数。注意:本题相对原题稍作改动示例:输入:["S...
原创
113阅读
0评论
0点赞
发布博客于 10 月前

回溯算法与相关习题详解

回溯算法简介回溯算法是一种遍历所有情况找到最优解的算法。通过回溯,重新做一次选择,从而得到最优解我们可以认为这是一种有规律的枚举法,再加上递归的使用,使得整个过程更加有序回溯算法初接触回溯算法通常可以解决求最优解,求全排列,匹配括号,上色等等通常回溯算法有一种较为通用的模板def 主函数: res = [] def backtrace(xxxxx):# 回溯方法本身 i...
原创
98阅读
0评论
0点赞
发布博客于 10 月前
一文读懂Depthwise卷积
发布Blink于 10 月前

Leetcode42 接雨水 Python

利用单调栈的特性class Solution: """ 单调栈,维护一个从大到小的单调栈,比如[4, 3, 2, 1] 假设我们的数据是[4, 3, 1, 0, 1, 2, 4] 我们先组成单调栈,则stack里的元素是[4, 3, 1, 0] 然后我们遇到1,它大于我们栈顶元素 此时先pop出栈顶元素,记为cur 现在栈顶元素是左边的水柱...
原创
119阅读
0评论
0点赞
发布博客于 10 月前

取数

题目描述:首先给出n个数字a1,a2,….an,然后给你m个回合,每回合你可以从中选择一个数取走它,剩下来的每个数字ai都要减去一个值bi。如此重复m个回合,所有你拿走的数字之和就是你所得到的分数。现在给定你a序列和b序列,请你求出最多可以得到多少分。输入:5510 20 30 40 504 5 6 7 8输出100输入第一行,仅包含一个整数n(1<=n<=...
原创
226阅读
0评论
0点赞
发布博客于 11 月前

百度笔试题小结

村民对小孩的可信度为0.9,我们设可信小孩说谎概率为0.1, 不可信的小孩说谎概率为0.5,这个小孩喊狼来了,但是狼并没有来,问村民对这小孩的信任度降至多少?事件A 为小孩说谎事件B 为小孩可信P(B) = 0.9, P(B^) = 0.1, P(A|B) = 0.1, P(A|B^) = 0.5我们用贝叶斯后验概率公式P(B|A) = P(BA)/P(A) = [P(A|B)P(B...
原创
137阅读
0评论
0点赞
发布博客于 11 月前

记一次蚂蚁金服算法实习电话面试

简单地介绍一下你自己xxxxxx介绍一下你在图像隐写检测大赛复现这三篇论文里面的卷积神经网络的区别Xunet是最早提出来用于隐写检测的卷积网络,在网络中加入abs绝对值层,TLU层。在图像预处理中使用了高通滤波器,帮助整个网络更快收敛下图是高通滤波器下图是低通滤波器YeNet引入一个概率图模型,进行先验特征计算,最后用elementwise的方式加到第一个卷积层后的特征图,继续...
原创
1375阅读
0评论
0点赞
发布博客于 1 年前

FRN浅析

背景BN批量归一化是深度学习的一个标志性技术。通过假设数据都处于正态分布,将数据进行归一化,从而加快整个网络的训练性能但是由于现在任务越来越复杂,导致我们没有足够显存去存放足够多的批量数据当batch太小的时候,批量归一化效果就没那么好了尽管有GN等等从其他维度上进行归一化的技术,但依旧无法取代BN最近谷歌提出了一个FRN结构。在低batch下的性能依旧稳定结构整个结构不复杂,就是...
原创
631阅读
0评论
0点赞
发布博客于 1 年前

YOLOv3 浅析

简介YOLOV3是一种轻量的目标检测网络,他不同于SSD,他是通过对整张图片划分小方块,每个小方块预测一个锚框,最后再和真实框进行一个回归,对锚框微调,得到最后的预测框。骨干网络原文作者采用的是DarkNet,这个网络结构没什么好说的计算逻辑那么整个YOLOV3预测需要计算哪些东西?框内是否包含物体 ,通过sigmoid函数预测一个概率框内物体的坐标,我们这里用xywh来表示,因此...
原创
129阅读
0评论
0点赞
发布博客于 1 年前

LEETCODE 300

动态规划我们维护一个列表,来比较当前最长子序列,和之前找到的最长子序列长度。我们建立一个列表dpdp[i]表示的是前i个元素中最长子序列长度,注意nums[i] 一定要选取!然后在前i个元素里再进行一轮循环dp[i] = dp[j] + 1class Solution: def lengthOfLIS(self, nums: List[int]) -> int: ...
原创
44阅读
0评论
0点赞
发布博客于 1 年前

LEETCODE 和为s的连续正数数列

题目简介输入一个正整数 target ,输出所有和为 target 的连续正整数序列(至少含有两个数)。序列内的数字由小到大排列,不同序列按照首个数字从小到大排列。示例 1:输入:target = 9输出:[[2,3,4],[4,5]]示例 2:输入:target = 15输出:[[1,2,3,4,5],[4,5,6],[7,8]]暴力遍历法最容易想到的就是暴力遍历法,...
原创
91阅读
0评论
0点赞
发布博客于 1 年前

二叉树按层遍历 LEETCODE 102

在学数据结构的时候,二叉树通常有三种遍历,分别是先序遍历,中序遍历,后序遍历。这些遍历其实都是深度优先遍历的一种变形,因此都是使用递归来解决然而二叉树还有一种层序遍历就是每一层输出节点就拿LEETCODE 102这道题举例子给定一个二叉树,返回其按层次遍历的节点值。 (即逐层地,从左到右访问所有节点)。例如:给定二叉树: [3,9,20,null,null,15,7], 3...
原创
50阅读
0评论
0点赞
发布博客于 1 年前

Mogrifier LSTM论文浅析

前言LSTM模型是基于RNN循环网络提出的一种改进的门控网络通过各个门很好地控制了时间步前后的信息他一共有四个门,分别是遗忘门,输入门,候选记忆细胞,输出门他能较好地建模长语义,缓解梯度消失的问题问题提出可以看到我们的输入x和隐藏状态H是相互独立的,理论上来说,当前输入应该是和前一时间步的隐藏状态有关,但是LSTM中只是将这两个进行运算,获得各个门的输出。因此有研究者提出在进入各个...
原创
1202阅读
6评论
1点赞
发布博客于 1 年前

GhostNet论文笔记及代码分析

综述为了解决移动端CNN部署,我们开发出一种新型的网络结构GhostNet我们通过一系列简单的线性变换来生成所谓的Ghost 特征图这种ghost特征图能揭示隐藏的信息通过两种架构ghost module 和 ghost bottleneck可以构造出我们的轻量级网络,表现也超越了Mobilenet介绍近年来有许多减小模型大小方法提出,其中一系列方法是对丢弃不重要的参数丢弃,然而这种思...
原创
1311阅读
0评论
3点赞
发布博客于 1 年前

HRNet解析

前 言大多数网络都是由较高的分辨率特征图开始,通过步长为2的卷积块,甚至是池化操作,来逐渐缩小特征图大小,丰富各个通道的信息,最后再通过一个全局池化,输出通道信息。于是HRNet的作者就在思考能否通过并行,来融合多个尺度特征图信息来提高网络的性能,事实上也证明了这种方法的有效。这篇SOTA的模型也常用于目标检测,姿势估计等复杂任务,且表现都十分不错网络结构这是论文里面的一幅图片,看上去十分...
原创
959阅读
1评论
1点赞
发布博客于 1 年前

LEETCODE:罗马数字转换整数

罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。字符 数值I 1V 5X 10L 50C 100D 500M 1000例如, 罗马数字 2 写做 II ,即为两个并列的 1。1...
原创
39阅读
0评论
0点赞
发布博客于 1 年前

LEETCODE:回文数判断

判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。示例 1:输入: 121输出: true示例 2:输入: -121输出: false解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。示例 3:输入: 10输出: false解释: 从右向左读, 为 01 。因此它不是一个回文数。数据...
原创
65阅读
0评论
0点赞
发布博客于 1 年前

AVL平衡二叉树

本文结合python数据结构一书https://facert.gitbooks.io/python-data-structure-cn/6.%E6%A0%91%E5%92%8C%E6%A0%91%E7%9A%84%E7%AE%97%E6%B3%95/6.17.AVL%E5%B9%B3%E8%A1%A1%E4%BA%8C%E5%8F%89%E6%90%9C%E7%B4%A2%E6%A0%91%E5...
原创
153阅读
0评论
0点赞
发布博客于 1 年前

python实现二叉树

二叉树关键操作在于插入和删除节点插入节点 def insert(self, root, val): if root is None: root = TreeNode(val) elif val < root.val: root.left = self.insert(root.left, val) ...
原创
256阅读
0评论
0点赞
发布博客于 1 年前

一文搞懂python协程,多线程,多进程

整篇博文比较长,完整看完可能需要十五分钟讲到python的并发编程,就不得不提到python的协程,多线程,多进程这些经典的并发模型。虽然都是用来解决并发问题的,但是不同场景下运用不同模型差别会很大。本文基于极客时间的python核心技术这个专栏来讲解下这三者的区别协程,线程,进程的区别首先这三者是有明显的大小关系进程 > 线程 > 协程换个说法就是一个进程可以有多个线程,而...
原创
420阅读
0评论
2点赞
发布博客于 1 年前

Python动态规划找零

def dpMakeChange(coinValueList, change, minCoins): for cents in range(change+1): # 一开始以一元钱为最起始单位,比如七元钱要七个一元,五元钱要五个一元 coincount = cents # 然后再小于我们所需金额的零钱里寻找 # 比如我们有1 ...
原创
292阅读
0评论
0点赞
发布博客于 1 年前

LeetCode 刷题一:TwoSum

字典法求解class Solution(object): def twoSum(self, nums, target): hashmap = {} for ind, num in enumerate(nums): hashmap[num] = ind for i, num in enumerate(nums):...
原创
54阅读
0评论
0点赞
发布博客于 1 年前

YOLOV3算法详解——设计思想以及候选区域选择

本篇博文是笔者结合百度paddle公开课的一个AI识虫项目对YOLOV3算法做的一个解析完整项目可参考https://aistudio.baidu.com/aistudio/projectdetail/250211什么是目标检测?相信有一定基础的深度学习开发者经常能听到目标检测这个词,那什么任务是目标检测呢。简单地来说目标检测就是让计算机识别出图片里面对应的物体,并标上边界框对于分类任...
原创
1390阅读
0评论
5点赞
发布博客于 1 年前

C++ primer 5学习第六天

顺序容器vector 可变大小数组,支持快速随机访问,在尾部插入或删除元素可能会很慢deque 双端队列,支持快速随机访问,在头尾插入/删除速度很快list 双向链表,只支持双向顺序访问,在list任何位置插入/删除速度很快forward_list 单向链表,只支持单向顺序访问,在链表任何位置插入/删除速度很快array固定大小数组,支持快速随机访问,不能添加或删除元素string ...
原创
99阅读
0评论
0点赞
发布博客于 1 年前

C++ primer 5学习第五天

IO类正确地来说,C++一共分三个IO类iostream提供istream 从流读取数据ostream 向流写入数据iostream 读写流fstream提供ifstream 从文件读取数据ofstream 输出数据到某一文件fstream 读写文件sstream这个是专门针对内存string对象读写操作istringstream 从string读取数据os...
原创
61阅读
0评论
0点赞
发布博客于 1 年前

解析PEN_NET(基于金字塔式图像修复)——损失函数(感知损失,风格损失,

上一篇博客我简单介绍了下基于金字塔式的图像修复我clone了该项目,并逐步分析,本篇文章主要讲解一下这个项目的损失函数的定义传统基于均方误差损失从一幅缺失的图像转换到一幅修复的图像我们最常想到的就是MSE均方误差损失通过比较每个像素的误差,最后取平方再平均,得到一个loss损失值,并反向传播,对各个层进行梯度下降事实上,均方误差表现的也不错,但是在一些细节,特征上缺失,造成局部的模糊...
原创
750阅读
0评论
1点赞
发布博客于 1 年前

C++ primer 5学习第四天

类成员函数可以理解为是类当中的函数,称为成员函数this指针this是一个额外的隐式参数,它隐式地指向调用该函数的对象的成员因此当调用成员函数的时候,都会传入该this指针,来表明当前对象是哪一个const成员函数在函数名后跟一个const代表的是 const成员函数int return_id() const{return id;}这里的const是修改隐式指针this的类型...
原创
48阅读
0评论
0点赞
发布博客于 1 年前

基于金字塔式架构的图像修复

基于金字塔式注意力机制的图像修复技术传统的两种修复算法基于边缘像素,利用微分方程来进行填补。首先从边缘确立一个patch?然后在其他区域搜索较为相似的区域,对缺失部分进行填充缺点就是,含有语义的部分较难恢复。基于深度学习网络结构设计开山之作,使用全连接层,只能做到128x128,而且恢复图像较为模糊引入全卷积,增加感受野,修复256x256,最后还有两个辨别器进行判别a...
原创
513阅读
5评论
0点赞
发布博客于 1 年前

C++ primer 5学习第三天

自动对象只存在于块执行器件的对象称为自动对象,当块的执行结束后,块中创建的自动对象的值变成未定义局部静态对象在经过定义语句时候对静态对象进行初始化,直到程序结束后对象才真正销毁静态对象的默认初始值为0函数声明最好是将一些变量和函数的声明整合到一起,单独放在一个头文件内,方便后续管理添加头文件在vscode上进行配置后我这里头文件都是用Mingw进行安装的在调用这些自带的头文件要...
原创
79阅读
0评论
0点赞
发布博客于 1 年前

C++ primer 5学习第二天

# 命名空间的using声明using namespace xxx通过这个声明我们就可以直接使用名字空间里面的名字注意:头文件不应该包含using声明String类初始化方式很多string s1(n, 'c') // 初始化n个c字符的字符串字符串的初始化分直接初始化和拷贝初始化使用=号就是拷贝初始化而直接string s1(...
原创
83阅读
0评论
0点赞
发布博客于 1 年前

C++ primer 5学习第一天

初始化和赋值在c++中初始化和赋值是两个不同的概念初始化是在创建变量时赋予一个初始值而赋值则是赋予一个值去擦除原先的值但在其他语言中,初始化和赋值的区别并不大引用引用实质上是另外一个变量的别名因此它们共用的是同一块内存区但由于引用仅仅是个名字,并不是对象,因此不能创建引用的引用指针指针存放的是某个变量的地址取地址符& 解引用符*指针的值应属于四种状态之一:1.指向...
原创
109阅读
0评论
0点赞
发布博客于 1 年前

图像修复(深度学习版)

前言这几天在折腾一项大作业使用深度学习来实现图像修复图像修复这块在CV界还是有很多坑需要去填的从2016年横空出世的自解编码器,到英伟达退出的Pconv模型,再到注意力机制各种玩的很花的模型都能进一步提升修复能力下面我就介绍一项自编解码器,即AutoEncoderDecoder之前一直不知道该怎么去做然后参考了一篇基于pytorch的https://blog.csdn.net/q...
原创
717阅读
4评论
0点赞
发布博客于 2 年前

卷积神经网络的可视化——热力图Grad CAM

前言在大部分人看来,卷积神经网络是一种黑盒技术,通过理论推导,以及梯度传播,去不断逼近局部最优解。这也导致人们对于神经网络研究进展的缓慢,因为这种黑盒模型无法给出研究人员进行改进的思路。所幸的是,近几年来的论文,也从常规的神经网络结构转向神经网络可视化,目的是让我们能看见卷积神经网络“学习”到了什么,神经网络是怎么判别物体的类别今天就要为大家介绍一种卷积神经网络可视化的技巧,它发表于一篇论文,...
原创
3320阅读
3评论
5点赞
发布博客于 2 年前

深入浅出数据结构——复杂度分析

首先我们通常用大O表示法来表示算法的复杂度我们一般不用准确计算出整个算法所需要的步骤只需要将其增长规律算出来就行比如我要遍历一个长度为n的数组此时时间复杂度就为O(n)而如果我只遍历位置为 2的整数次幂的 数组元素那么复杂度就为log2n我们将时间复杂度简写为O(logn)此外我们通常使用四个复杂度分析分别是1.最好情况时间复杂度2.最坏情况时间复杂度3.平均情况时间复杂度...
原创
70阅读
0评论
0点赞
发布博客于 2 年前

kmeans聚类算法

前言kmeans是一种聚类算法其简单,易用在机器学习,数据挖掘领域常常应用原理众所周知聚类就是要对一堆杂乱无章的数据进行分类合并假设我们有数据集dataset,并且将其聚类为k个簇kmeans聚类算法的思想有如下几步第一步首先在数据集随机挑选k个点,分别作为这k个簇的质心第二步其余的点根据欧式距离公式,找到离其自身最近的质心并合并为一类第三步现在我们已经初步的到聚类过的...
原创
123阅读
0评论
0点赞
发布博客于 2 年前

hexo博客搭建出现弹窗解决方案

一开始在搭建博客的时候点击友链,所有文章都会弹出来一个空白网页搜了很多办法都不行然后在贴吧里看见一个老哥分享亲测有效我们依次打开博客部署目录然后进入到\themes\yilia\layout_partial这个目录下面有一个left-col.ejs的文件我们找到这一行添加上 target = "_parent"如下图所示保存clean一下再部署就可以完美解决弹窗问题...
原创
201阅读
0评论
0点赞
发布博客于 2 年前

Squeeze_Excitation个人理解

前言在神经网络地不断发展中,研究人员不断探索网络中通道之间的特性在最近提出的几个网络比如目标检测中的ResNext,甚至是注意力Attention机制都采用了一种从全局信息采集,对各个通道分配不同的权值,以此来获得更好的信息流动Squeeze_Excitation这种从全局信息来调整各个通道的权重比,最早是应用在Squeeze_excitation的网络块...
原创
888阅读
0评论
0点赞
发布博客于 2 年前

Keras实现层的分离

前言笔者最近在复现Shufflenet Mobilenet 和谷歌最新推出的EfficientNet结构发现各大网络都在往轻巧化方向发展其中一个很关键的,就是Depthwise卷积结构的提出,可以参考我上篇博客而其中Depthwise卷积需要对单独的通道在做一次卷积,而不是多通道上进行累加因此这就涉及到了通道的分离下面我们直接来看代码代码实现import kerasfrom ke...
原创
231阅读
0评论
0点赞
发布博客于 2 年前

DropConnect与Dropout区别

训练神经网络过程中,过拟合常常出现为了避免出现过拟合Hinton提出使用Dropout层来减少过拟合Dropout就是将某些神经网络的隐层单元的输出设置为0从而反向传播的时候不会进行参数的更新现在很多机器学习框架已经帮我们实现好了Dropout层了我们只需传入保留率,这是一个数值在0-1的超参数就可以实现DropoutDropConnect而DropConnect它丢弃掉的是神经...
原创
620阅读
0评论
0点赞
发布博客于 2 年前

一文读懂Depthwise卷积

视频来源:https://www.bilibili.com/video/av67348232?from=search&seid=10221504884724623592常规卷积相信接触过卷积神经网络的都知道常规卷积的操作我们通过N个DkDk大小的卷积核卷积出来的结果设为DnDn*N现在我们来计算一下常规卷积的计算开销一个卷积核做一次卷积操作需要的开销为 ...
原创
462阅读
0评论
0点赞
发布博客于 2 年前

Swish激活函数

swish激活函数的格式f(x) = x*sigmoid(βx)β是个可调参数在深层模型上要优于传统的relu具有无上界,有下界,光滑,非单调绘图代码import numpy as npimport matplotlib.pyplot as pltdef sigmoid(x): return 1/ (1 + np.exp(-x))x = np.arange(-5, ...
原创
1871阅读
0评论
1点赞
发布博客于 2 年前

Mish激活函数

前言人们对激活函数都在不断探究,而现在广泛应用的激活函数通常是relu,tanh这两种但是relu在负值的时候直接截断梯度下降的不够平滑因而有团队提出一种新的激活函数来进行优化Mish激活函数Mish激活函数的表达式为 Mish = x*tanh(ln(1+e^x))使用matplotlib画图可得从图中可以看出他在负值的时候并不是完全截断而是允许比较小的负梯度流...
原创
5582阅读
1评论
1点赞
发布博客于 2 年前

LSTM长短期记忆模型

前言传统卷积神经网络更加针对的是空间相关性的数据,比如各种各样的图片而生活中,并不是所有数据都是具有较强的空间相关性的。比如我们的文字,语音,它是一种随时间变化的数据,我们常称这种数据为序列数据于是出现了RNN循环神经网络来解决这种序列数据。但是序列数据通常长度很长,它相当于卷积神经网络一层层卷积层,当长度过长,会引发梯度消失或梯度爆炸。卷积神经网络我们可以控制,但是序列数据长度就在这儿,如...
原创
360阅读
0评论
0点赞
发布博客于 2 年前

ShuffleNet原理

前言ShuffleNet是一款旷视研究院提出的针对移动设备的轻量级网络它是为了进一步改善MobileNetShuffleNet作者发现,虽然MobileNet作者采用逐通道卷积与逐点卷积(即用1x1卷积块进行卷积)来降低模型参数,但大部分参数都集中在1x1卷积快计算中。所以ShuffleNet改进方法就是将特征图进行分组,让卷积块只对组内的特征图进行计算,分组后,网络需要对不同组的输出进行信...
原创
108阅读
0评论
0点赞
发布博客于 2 年前

激活函数解析

前言激活函数在神经网络经常用到激活函数,激活函数的作用是对神经元的输出做一个非线性的变换,进而求得对应的梯度,进行梯度下降优化Sigmoidsigmoid函数表示式为sigmoid(x) = 1 / (1 + e^(-x))它相较阶跃函数有更好的可导性如果设sigmoid函数为f(x)则其导数为f(x)*(1-f(x))所以它求导也很简单但是当输入发生偏移,比如偏移到3或4,其...
原创
47阅读
0评论
0点赞
发布博客于 2 年前

MXNET自定义损失函数

在学习李沐老师的目标检测篇章目标检测中由于负类较多,正类较少,我们可以适当的减少对负类的惩罚因此根据视频教程我们来重新写一个损失函数通常mxnet的损失函数需要继承Loss类from mxnet.gluon.loss import Lossclass FocalLoss(gluon.loss.Loss): def __init__(self, axis=-1, alpha=0...
原创
540阅读
0评论
0点赞
发布博客于 2 年前

计算图像交并比

# 计算图像交并比a = {'LB':{'x':1, 'y':2}, 'RT':{'x':3, 'y':4}}b = {'LB':{'x': 2, 'y':1}, 'RT':{'x':4, 'y':3}}W = min(a['RT']['x'], b['RT']['x']) - max(a['LB']['x'], b['LB']['x'])H = min(a['RT']['y'], b[...
原创
167阅读
0评论
0点赞
发布博客于 2 年前

图像隐写发展历史

前言随着技术发展,计算机安全也不仅局限于网络安全,信息本身安全性也引起了人们的关注。一种有别于常规密码学的隐写术正逐渐发展,并常被用于传递隐藏信息。前几天就有俄罗斯黑客将恶意代码隐写进音频wav文件里进行传播,本文将针对图像隐写的发展历史进行一个总结囚徒模型博弈论和密码学里面常提到的一个模型就是囚徒模型。在一个监狱里,有两个罪犯和一个狱警。如果罪犯要传递一些信息,就很容易被狱警发现。但如果信...
原创
1101阅读
0评论
0点赞
发布博客于 2 年前

循环神经网络初接触

前言之前的文章都是以卷积网络为基础,对图像进行一些处理。但是有一类数据实际上并不是跟图像一样具有较强的空间关联性。而是与时间有关。比如我们的说的一句话,如“你好”,说出“你”这个字,下一个字大概率是“好”,这样组成一个词“你好”,所以传统卷积网络并不适合处理语言,因此我们将引出循环神经网络来对语言进行训练。语言模型首先我们引入语言模型,这是自然语言处理常用的技术。由前面的例子我们可以认为一句...
原创
44阅读
0评论
0点赞
发布博客于 2 年前

飞桨框架初体验——人脸识别

前言笔者最近在尝试接触飞桨框架感觉百度开发的这个框架性能,架构都还是很不错的相比其他的框架简洁很多并且官网还有一些项目可供学习今天写这篇博客是基于https://aistudio.baidu.com/aistudio/projectdetail/44338人脸识别项目并对总体进行一个总结图像数据处理图像数据有很多种处理方法该项目选择以字典形式进行存储import osimpo...
原创
634阅读
0评论
0点赞
发布博客于 2 年前

解析深度学习优化算法(包含一定公式推导)

前言在深度学习任务中,我们通常会定义一个损失函数,其表征的是预测值与实际值的差距,然后通过一定的优化算法来减少损失函数计算出来的损失值在这个优化环节上,算法起到了至关重要的作用,我们需要通过算法来快速降低我们的训练误差,同时还要防止过拟合现象的出现在深度学习中挑战在深度学习中,优化各个参数其实就是对损失函数求最小值。而我们在一个二次函数中,很明显就能知道哪个是最小值但是深度学习中,特征...
原创
351阅读
0评论
0点赞
发布博客于 2 年前

DenseNet解析以及和Resnet对比

前言前面笔者写了一篇关于resnet的文章https://blog.csdn.net/weixin_44106928/article/details/101627948当时看完resnet的论文,理解到设计思想,真的感觉到作者何凯明的牛逼之处巧妙了运用短连接的方式将输入输出add到一起,减轻了深度神经网络的梯度消失,弥散的问题而后几年,DenseNet参考了resnet的网络结构,将相加...
原创
830阅读
0评论
0点赞
发布博客于 2 年前

1X1卷积核的理解

前言1x1卷积核在近几年应用广泛。比如残差网络Resnet,Googlenet的Inception块,都有1x1卷积核的身影,下面笔者讲述下自己对1x1卷积核的理解1x1卷积核简介大家可能常见的都是3x3, 5x5等卷积核而且在数字图像处理应用上,经常会有一些设计好的卷积核来去进行边缘检测而1x1卷积核并没有这种作用它的长宽度均为1,这也使他作用范围是在通道维数上面实际上,它的作用跟...
原创
334阅读
0评论
0点赞
发布博客于 2 年前

Softmax回归

前言Softmax回归主要用于分类问题,它所解决的是常规分类算法输出值不稳定的问题比如 有三种类别分类,我对于一组图像输出值为0.1 100 0.1那很显然,我们第二个输出值较大,可以表明第二类是我们预测的类别但是如果对于另外一组图片 1000 100 1000 对于这种例子,在刚刚举的例子最大输出值,在这一组就显得比较小,这种误差值比较大,我们难以在后续的优化算法进行优化所以我们提出的...
原创
51阅读
0评论
0点赞
发布博客于 2 年前

残差网络ResNet学习笔记

引言随着深度学习的发展,简单的浅层网络卷积结构已经无法满足需求。而一味的加深网络结构,又会使网络很难收敛。研究者们都在网络结构上进行创新。而一种新型结构Resnet在ImageNet比赛上拔得头筹,拿下识别冠军,引起了不小的轰动基础结构 残差块残差网络是由一个个残差块来进行组成的这是一种跳跃连接的方式第一条线路经过常规的卷积,激活,批量归一化后,在输出的时候与输入进行相加。最后整个输...
原创
235阅读
0评论
1点赞
发布博客于 2 年前

机器学习集合划分

众所周知,在机器学习深度学习领域,合理划分训练集验证集和测试集是很重要的,本文主要介绍如何划分。过去,人们运用机器学习传统方法的时候,一般将训练集和测试集划为7:3.若有验证集,则划为6:2:2. 这样划分确实很科学,当数据量不大的时候(万级别及以下)。但到了大数据时代,数据量陡增为百万级别,此时我们不需要那么多的验证集和训练集。假设有100W条数据,只需要拿出1W条来当验证集,1W条来...
转载
52阅读
0评论
0点赞
发布博客于 2 年前

opencv dct变换报错

进行DCT变换的时候总是报错OpenCV Error: Assertion failed (type == CV_32FC1 || type == CV_64FC1) in cv::dct, file …\modules\core\src\dxt.cpp, line 3603(117, 128, 3)Traceback (most recent call last):File “dct.p...
原创
503阅读
0评论
0点赞
发布博客于 2 年前

Mxnet基础入门总结

前言笔者最近在学习深度学习,了解了tensorflow和mxnet这两个框架总的来说这两个框架各有优劣tensorflow的学习资源,代码更多一点mxnet对新手比较友好,有指定书籍进行指导,社区也比较活跃,方便交流最近也是在跟着Dive into Deeplearning进行学习所以想写一篇博客来对mxnet进行一个基础的总结数据类型在tensorflow中,我们操作的数据类型叫...
原创
90阅读
0评论
0点赞
发布博客于 2 年前

Keras实现CNN网络识别验证码

最近在极客时间学习Tensorflow教程,想写一篇博文来总结一下CNN识别验证码这个小项目生成验证码我们会引入captcha这个库来生成我们的验证码这个库安装也很简单直接使用pip install 安装即可我们生成一个验证码的数据集from captcha.image import ImageCaptchaimport randomimport numpy as npimpo...
原创
527阅读
8评论
1点赞
发布博客于 2 年前

Tensorflow初接触——房价预测

最近笔者进入学校的机器学习实验室,开始学习相关知识。并跟随极客时间的相关课程学习。第一次接触机器学习框架Tensorflow,遇到的坑也不少,这里我以吴恩达机器学习的房价数据为基础,用Tensorflow进行简单的线性回归,并使用Tensorboard进行数据流图的可视化基础概念首先简要介绍以下Tensorflow的几个概念1.张量,也就是tensor,我们只需简单的理解为线性代数的向量就...
原创
165阅读
0评论
0点赞
发布博客于 2 年前

使用Scrapy爬取虎扑爆照区的照片

笔者最近在学习爬虫框架Scrapy,发现Scrapy的Pipeline自带一个图片下载器,便想能否自己实战爬取虎扑爆照区的照片首先是页面分析今天我们爬取的网页是https://bbs.hupu.com/selfie我们使用谷歌开发者工具选中一个链接,分析一下当前页面的html代码从中我们要提取这个带有数字的html,并将他与我们的网址合并,就是每个帖子的html所以我们可以写如下的cs...
原创
184阅读
0评论
0点赞
发布博客于 2 年前

'ItemMeta' object does not support item assignment 错误解决方法

最近跟着崔大的爬虫实战书学习到scrapy通用爬虫,按书上的步骤把爬虫程序分解后,运行时会出现ItemMeta错误。参考了其他搜索结果,解决方法很简单,只需要在配置的json文件里,NewItem里加上括号就行即"item": { "class": "NewsItem()", "loader": "ChinaLoader",.............
原创
1956阅读
0评论
0点赞
发布博客于 2 年前

爬取360图片

这次我们爬取的网址是http://image.so.com/z?ch=photography随着滚轮下滑,图片一个个加载出来,所以我们推测这是Ajax形式我们在开发工具里选中XHR观察请求可知这个url的sn参数是以30倍数增长,我们可以利用这个特性进行url的构造其次我们图片的具体信息都在list里面下面我们先新建scrapy项目在你想创建项目的路径里打开powershel...
原创
586阅读
0评论
0点赞
发布博客于 2 年前

Scrapy爬取360图片

这里我们爬取的是360图片链接为"http://image.so.com/z?ch=photography"随着页面下滑,他会自动加载图片,我们能推断出这使用的是Ajax加载方式我们打开开发工具,选择XHR我们观察可以发现sn这里是以30的倍数增长我们可以使用一个for循环来进行url的更新我们所要爬取的图片信息都在这list里面首先我们创建一个scrapy项目,在你想创建项...
原创
266阅读
0评论
0点赞
发布博客于 2 年前