Unormalized Resnet
介绍现在BN层被广泛应用于图像分类网络,批量归一化的特性能保证信号不会过大,能良好的传播到下一层神经网络当中。但它也有一些缺点,如:依赖bachsize,当batchsize较小时,效果不好破坏一个batch内样本之间的独立性带来额外的计算和显存开销导致奇怪的Bug本文试图从信号传播可视化,合适的权重初始化等角度,摆脱CNN对BN层的依赖,保证每一层网络的信号传播(不至于信号幅度过大,爆炸)。前排提醒:个人觉得这篇文章十分有意思,但是涉及到探索CNN机制避免不了繁重的公式推导,希望各位能有