有关于最大公约数与最小公倍数

先通过一道例题来看:
输入2个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数。

条件:

  1. P,Q是正整数;

  2. 要求P,Q以x0为最大公约数,以y0为最小公倍数。

试求:

满足条件的所有可能的两个正整数的个数。
输入
每个测试文件包含不超过5组测试数据,每组两个正整数x0和y0(2<=x0<100000,2<=y0<=1000000)。
输出
对于每组输入数据,输出满足条件的所有可能的两个正整数的个数。

样例输入
3 60
样例输出
4
此时的四种情况分别为:

3     60
15   12
12   15
60   3

解题思路:
第一种就是很常见的思路,辗转相除法
AC代码:

#include<bits/stdc++.h>
#include<math.h>
using namespace std;
const int N = 1e5+10;
int a[N];
int g(int n , int m)
{
  int temp , r;
  if(n < m)
  {
  	temp = n;
  	n = m;
  	m = temp;
  }
  while(m!=0)
  {
  	r=n%m;
  	n=m;
  	m=r;
  }
  return n;
}
int main()
{
  int a , b , res;
  while(cin >> a >> b)
  {
  	res = 0;
  	for(int i = a ; i <= b ; i++)
  	{
  		for(int j = i+1 ; j <= b ; j++)
  		{
  			if(g(i,j) == a&&i/g(i,j)*j==b)
  			  res++;
  		}
  	}
  	cout << 2*res << endl;
  }
  return 0;
}

第二种就是辗转相除的递归写法
AC代码:

#include<bits/stdc++.h>
#include<math.h>
using namespace std;
const int N = 1e5+10;
int a[N];
int gcd(int n , int m)
{
	int temp , r;
	if(n < m)
	{
		temp = n;
		n = m;
		m = temp;
	}
	if(n%m==0)
	  return m;
	else 
	  return gcd(m,n%m);
}
int main()
{
	int a , b , res;
	while(cin >> a >> b)
	{
		res = 0;
		for(int i = a ; i <= b ; i++)
		{
			for(int j = i ; j <= b ; j++)
			{
				if(gcd(i,j) == a&&i/gcd(i,j)*j==b)
				  res++;
			}
		}
		cout << 2*res << endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值