今天仍然是DP的学习,但第一个题显然用回溯更加简单!
1.目标和(力扣494)
本题通过一个数组寻找目标和,由于可以任意在元素前加加减号,则利用回溯遍历所有情况,从第一个数开始遍历添加加号和减号的情况。
int res = 0; public int findTargetSumWays(int[] nums, int target) { search(nums,target,0); return res; } public void search(int[] nums, int target, int index){ if(index == nums.length) { if(target == 0) res++; return; } search(nums,target-nums[index],index+1); search(nums, target+nums[index],index+1); }
2.一和零(力扣474)
本题可以抽象为三维01背包问题,背包容量限制从一个变为两个,想通了也就没那么难理解了。把0和1的个数限制作为背包容量的两个限制,把字符串数组中的字符串抽象成物品,价值即为个数(放(1)与不放(0)),最后就能得到最大子集长度。
public int findMaxForm(String[] strs, int m, int n) { //看作三维动态规划问题,背包从之前一个限制变为两个限制,dp[i][j][k]表示当前第i个元素的情况下背包两个限制容量为j、k时strs最大子集的大小 int[][][] dp = new int[strs.length][m+1][n+1]; //记录0和1的数量 int zeroNum = 0; int oneNum = 0; //初始化i=0的情况 for (int j = 0; j < strs[0].length(); j++) { if(strs[0].charAt(j) == '0') zeroNum++; else oneNum++; } //仍然是初始化,比01背包问题多了一维 for (int j = zeroNum; j <= m; j++) { for (int k = oneNum; k <= n; k++) { dp[0][j][k] = 1; } } //由于i=0已经初始化过,直接从i=1开始,也就是strs中第二个元素开始放 for (int i = 1; i < strs.length; i++) { zeroNum = 0; oneNum = 0; for (int j = 0; j < strs[i].length(); j++) { if(strs[i].charAt(j) == '0') zeroNum++; else oneNum++; } for (int j = 0; j <= m; j++) { for (int k = 0; k <= n; k++) { //背包放不下 if(j < zeroNum || k < oneNum) dp[i][j][k] = dp[i-1][j][k]; //背包放得下 else dp[i][j][k] = Math.max(dp[i-1][j][k],dp[i-1][j-zeroNum][k-oneNum]+1); } } } return dp[strs.length-1][m][n]; }
3.零钱兑换2(力扣518)
完全背包+组合问题,一维数组解决,需要提前初始化(内层循环从前向后了,之前01背包问题不用是因为从后往前遍历)先遍历物品再遍历背包容量,内层循环需要从前向后遍历,一个物品可以放很多次。注意组合问题dp[j] += dp[j - coins[i]];
public int change(int amount, int[] coins) { int[] dp = new int[amount+1]; //初始化 dp[0] = 1; for (int i = 0; i < coins.length; i++) { // 遍历物品 for (int j = 0; j <= amount; j++) { // 遍历背包容量 if(j >= coins[i]) dp[j] += dp[j - coins[i]]; } } return dp[amount]; }
4.组合总和4(力扣377)
完全背包+排列问题,一维数组解决,和上题相同,需要初始化,从前往后遍历,但上题是组合问题,外层循环遍历物品内层循环遍历容量,本题是排列问题外层循环遍历容量内层循环遍历物品。排列问题同样dp[j] += dp[j-nums[i]]。
public int combinationSum4(int[] nums, int target) { int[] dp = new int[target+1]; dp[0] = 1; for (int j = 0; j <= target; j++) { for (int i = 0; i < nums.length; i++) { if(j >= nums[i]) dp[j] += dp[j-nums[i]]; } } return dp[target]; }
5.零钱兑换(力扣322)
本题首先分析清楚需要最小的值,因此初始化时除了第一个数都应该为最大数,然后遍历时更新最小值,则最后就能得到答案。对于动态规划题,只要能抽象出来,大体都一样,主要是遍历顺序和递推式
public int coinChange(int[] coins, int amount) { int[] dp = new int[amount+1]; Arrays.fill(dp,Integer.MAX_VALUE); dp[0] = 0; for (int i = 0; i < coins.length; i++) { for (int j = 0; j <= amount; j++) { if(j>=coins[i] && dp[j - coins[i]] != Integer.MAX_VALUE) dp[j] = Math.min(dp[j], dp[j-coins[i]]+1); } } if(dp[amount] == Integer.MAX_VALUE) return -1; return dp[amount]; }
6.完全平方数(力扣279)
要明确背包问题中的容量是多少、物品是什么,本题容量是n,物品是小于等于根号n的数,求将物品装进背包所需要最小的物品数。要学会把问题抽象。
public int numSquares(int n) { int[] dp = new int[n+1]; //要找最小值,填充最大值 Arrays.fill(dp,Integer.MAX_VALUE); //初始化 dp[0] = 0; //先遍历物品,最多到sqrt(n) for (int i = 0; i * i <= n; i++) { //再遍历容量 for (int j = 0; j <= n ; j++) { //注意当dp[j-i*i]就是最大值时没有比较意义,若不加这个条件就会使dp[j-i*i]+1为最小值,出错 if(j >= i * i && dp[j-i*i] != Integer.MAX_VALUE) dp[j] = Math.min(dp[j],dp[j-i*i]+1); } } return dp[n]; }
7.打家劫舍(力扣198)
本题采用动态规划的方法,dp[i]表示到第i个元素能获得的最大收益,而最大收益在于取前一个还是取前一个的前一个和当前元素。
public int rob(int[] nums) { if(nums.length == 0) return 0; if(nums.length == 1) return nums[0]; int[] dp = new int[nums.length]; dp[0] = nums[0]; dp[1] = Math.max(nums[0], nums[1]); for (int i = 2; i < nums.length; i++) { dp[i] = Math.max(dp[i-1],dp[i-2]+nums[i]); } return dp[nums.length-1]; }
8.打家劫舍2(力扣213)
本题与上题唯一的不同在于首尾相接,即不能同时偷第一个和最后一个,就把整体分为两段,分别包含头和尾。再用上题的解决方案做。
public int rob(int[] nums) { if(nums.length == 0) return 0; if(nums.length == 1) return nums[0]; int res1 = range(nums,0,nums.length-1); int res2 = range(nums,1,nums.length); return Math.max(res1, res2); } public int range(int[] nums, int start, int end){ if(end-start == 1) return nums[start]; int[] dp = new int[nums.length]; dp[start] = nums[start]; dp[start+1] = Math.max(nums[start],nums[start+1]); for (int i = start+2; i < end; i++) { dp[i] = Math.max(dp[i-1],dp[i-2]+nums[i]); } return dp[end-1]; }
9.买卖股票的最佳时机(力扣121)
使用贪心,让买的时候尽量低,然后取区间最大值。
public int maxProfit(int[] prices) { //用贪心,尽可能让右边的小,取区间内最大值 int low = Integer.MAX_VALUE; int res = 0; for (int i = 0; i < prices.length; i++) { low = Math.min(low,prices[i]); res = Math.max(res,prices[i]-low); } return res; }
*10.最长递增子序列(力扣300)
本题用动态规划求最长递增子序列,dp[i]表示第i个位置前(包括第i个位置)构成的最长递增子序列的长度,由于中间元素可以跳过,则需要从下标0比较到i-1。递推公式为dp[i] = Math.max(dp[i],dp[j]+1)。
public int lengthOfLIS(int[] nums) { if(nums.length == 1) return 1; //动态规划:dp[j]表示到第j个位置时,最长递增子序列的长度 int[] dp = new int[nums.length]; // dp[0] = 1;由于每个元素都有可能作为开始,则每个元素初始值都是1 Arrays.fill(dp,1); int max = 0; for (int i = 1; i < nums.length; i++) { for (int j = 0; j < i; j++) { //与之前的每一个都比(因为中间的可以删除) if (nums[i] > nums[j]) dp[i] = Math.max(dp[i], dp[j] + 1); } //记录最长的 max = Math.max(max,dp[i]); } return max; }
11.最长连续递增序列(力扣674)
本题与上题不同,需要连续,则既可以用贪心记录最大值,也可以用动态规划记录每个位置的值后取最大。相对简单。
贪心:
public int findLengthOfLCIS(int[] nums) { if(nums.length == 1) return 1; int count = 1; int res = 0; for (int i = 1; i < nums.length; i++) { if(nums[i]>nums[i-1]) count++; else count = 1; res = Math.max(res,count); } return res; }
动态规划:
public int findLengthOfLCIS(int[] nums) { if(nums.length == 1) return 1; int[] dp = new int[nums.length]; Arrays.fill(dp,1); int max = Integer.MIN_VALUE; for (int i = 1; i < nums.length; i++) { if(nums[i] > nums[i-1]){ dp[i] = dp[i-1]+1; } max = Math.max(max,dp[i]); } return max; }
12.最长重复子数组(力扣718)
本题利用动态规划,关键点在于,两数组值相等时有dp[i][j] = dp[i-1][j-1] + 1,其中dp[i][j]表示以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度。
public int findLength(int[] nums1, int[] nums2) { int[][] dp = new int[nums1.length+1][nums2.length+1]; int max = Integer.MIN_VALUE; for (int i = 1; i <= nums1.length; i++) { for (int j = 1; j <= nums2.length; j++) { if(nums1[i-1] == nums2[j-1]) dp[i][j] = dp[i-1][j-1] + 1; max = Math.max(max,dp[i][j]); } } return max; }