农夫要修理牧场的一段栅栏,他测量了栅栏,发现需要N块木头,每块木头长度为整数Li个长度单位,于是他购买了一条很长的、能锯成N块的木头,即该木头的长度是Li的总和。
但是农夫自己没有锯子,请人锯木的酬金跟这段木头的长度成正比。为简单起见,不妨就设酬金等于所锯木头的长度。例如,要将长度为20的木头锯成长度为8、7和5的三段,第一次锯木头花费20,将木头锯成12和8;第二次锯木头花费12,将长度为12的木头锯成7和5,总花费为32。如果第一次将木头锯成15和5,则第二次锯木头花费15,总花费为35(大于32)。
请编写程序帮助农夫计算将木头锯成N块的最少花费。
输入格式:
输入首先给出正整数N(≤104),表示要将木头锯成N块。第二行给出N个正整数(≤50),表示每段木块的长度。
输出格式:
输出一个整数,即将木头锯成N块的最少花费。
输入样例:
8
4 5 1 2 1 3 1 1
输出样例:
49
代码:
#include<iostream>
#include<stdlib.h>
#include<string>
using namespace std;
int quan=0;
void paixu(int A[],int n)//由大到小
{
int i,j;
for(i=1;i<=n;i++)
{
for(j=1;j<=n-i;j++)
{
if(A[j]<A[j+1])
{
int t=A[j];
A[j]=A[j+1];
A[j+1]=t;
}
}
}
}
void chazhaopaixu(int A[],int n)// 此刻A[]前n-1个元素已经排好,目的是为了插入最后一个元素
{
int i,k,j;
for(i=1;i<n;i++)
{
if(A[i]<A[n])
{
int t=A[n];
for(j=n-1;j>=i;j--)
{
A[j+1]=A[j];
}
A[i]=t;
break;
}
}
}
int chuli(int A[],int n)
{
if(n<=1)
return 0;
quan+=A[n]+A[n-1];
A[n-1]=A[n]+A[n-1];
A[n]=0;
chazhaopaixu(A,n-1);
chuli(A,n-1);
}
int main()
{
int N,i;
int A[10005];
cin>>N;
for(i=1;i<=N;i++)
{
cin>>A[i];
}
paixu(A,N);
chuli(A,N);
cout<<quan<<endl;
return 0;
}