ccql
码龄4年
  • 215,974
    被访问
  • 476
    原创
  • 5,367
    排名
  • 355
    粉丝
关注
提问 私信

个人简介:与其临渊羡鱼,不如退而结网。

  • 毕业院校: 西安建筑科技大学
  • 加入CSDN时间: 2018-10-24
博客简介:

ccql's Blog

博客描述:
与其临渊羡鱼,不如退而结网。
查看详细资料
  • 5
    领奖
    总分 980 当月 64
个人成就
  • 获得259次点赞
  • 内容获得125次评论
  • 获得991次收藏
创作历程
  • 11篇
    2022年
  • 21篇
    2021年
  • 341篇
    2020年
  • 107篇
    2019年
成就勋章
TA的专栏
  • 深度学习
    6篇
  • 数据科学
    18篇
  • Web开发
    2篇
  • 《计算机算法设计与分析》读书笔记
    9篇
  • 《实用软件测试教程》读书笔记
    7篇
  • 《数据库原理、编程与性能》读书笔记
    8篇
  • OpenGL学习笔记
    5篇
  • 操作系统
    3篇
  • 数据库学习
    4篇
  • 【kaggle】Top方案解析
    2篇
  • 【算法】LeetCode
    51篇
  • 【算法】洛谷
    120篇
  • 【算法】蓝桥杯历届真题
    30篇
  • 【算法】PAT真题
    111篇
  • 【算法】CCF-CSP认证历届真题
    16篇
  • Python爬虫
    7篇
  • 剑指 Offer
    6篇
  • 《计算机网络教程》
    4篇
  • 学习笔记汇总
    60篇
  • 数学建模
    13篇
兴趣领域 设置
  • 人工智能
    opencv机器学习深度学习神经网络tensorflowpytorchnlp数据分析scikit-learn
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【创作纪念日】胡言乱语

今天收到CSDN的通知,已经是来到这个技术社区的第四年,写点东西,记录一下。机缘翻看了我的第一篇博客《自学python的第三天,小结一下》,奇奇怪怪的文章标题,甚至博客内容中的代码部分都是后续加上的语法高亮,尽管有诸多不足,但至今仍可以回忆起写出这篇博客的那个夜晚是多么激动。最初接触CSDN是因为在知乎的一位大佬给我提的大学学习建议中的其中一条,我在下面附上他的原答案:拿到奖学金,越多越好(三项校级奖学金+两项企业奖学金)√有个自己的技术博客,记录自己的学习过程(这里就是)√有个github
原创
发布博客 2022.04.19 ·
340 阅读 ·
1 点赞 ·
2 评论

【python基础】邮件发送

1. 效果预览2. 代码实现注意:授权码不是邮箱登陆密码,需要在邮箱设置中申请获取。import smtplibimport timefrom email.mime.text import MIMETextfrom email.header import Headermail_host='smtp.126.com' # 126邮箱,别的邮箱需要改动,请自行查找mail_user='******@126.com' # 自己的邮箱mail_password='***********
原创
发布博客 2022.03.16 ·
703 阅读 ·
0 点赞 ·
0 评论

【Web开发】下拉选择输入框实现

1. 效果预览2. 代码<label>gender</label><input name="gender" type="text" list="gender-list" placeholder="Male"><datalist id="gender-list"> <option>Male</option> <option>Female</option></datalist>
原创
发布博客 2022.03.16 ·
225 阅读 ·
0 点赞 ·
0 评论

【Web开发】基于swiper插件的轮播图实现

1. 效果展示 2.代码html代码中出现的{{}}和{%%}为flask框架的jinja2模板引擎内容,目的是为了实现前端代码循环以及后端数据引入,使用时类似{{}}的数据替换成自己的数据,{%%}中的for循环就把代码多拷贝几遍即可。<div class="owl-carousel owl-theme slide" id="featured"> <div class="swiper"> {% if swiper %} <div clas
原创
发布博客 2022.03.16 ·
916 阅读 ·
0 点赞 ·
0 评论

Git报错解决:remote: error: File:1f6cc8452313 157.10 MB, exceeds 100.00 MB

完整报错$ git push origin masterEnumerating objects: 25, done.Counting objects: 100% (25/25), done.Delta compression using up to 12 threadsCompressing objects: 100% (17/17), done.Writing objects: 100% (21/21), 114.94 MiB | 1.75 MiB/s, done.Total 21 (del
原创
发布博客 2022.02.27 ·
64 阅读 ·
0 点赞 ·
0 评论

【动手学深度学习_读书笔记】深度卷积神经网络_AlexNet

深度卷积神经网络_AlexNet1.网络结构网络结构计算过程:2.网络结构说明AlexNet与LeNet的设计理念非常相似,但也有显著的区别。第一,更大的卷积窗口和更多的卷积通道:AlexNet第一层中的卷积窗口形状是11×1111\times1111×11。因为ImageNet中绝大多数图像的高和宽均比MNIST图像的高和宽大10倍以上,ImageNet图像的物体占用更多的像素,所以需要更大的卷积窗口来捕获物体。第二层中的卷积窗口形状减小到5×55\times55×5,之后全采用3×33\t
原创
发布博客 2022.02.06 ·
1682 阅读 ·
0 点赞 ·
0 评论

【动手学深度学习_读书笔记】卷积神经网络_LeNet

卷积神经网络(LeNet)1. 网络结构网络结构计算过程:2. 网络结构说明LeNet分为卷积层块和全连接层块两个部分。卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×55\times 55×5的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。这是因为第二个卷积层比第
原创
发布博客 2022.02.03 ·
770 阅读 ·
1 点赞 ·
0 评论

多输入通道和多输出通道的卷积计算

1. 输入通道数为nnn,输出通道数为111当输入数据含多个通道时,我们需要构造一个输入通道数与输入数据的通道数相同的卷积核,从而能够与含多通道的输入数据做互相关运算。例如:含222个输入通道的二维互相关计算的例子。在每个通道上,二维输入数组与二维核数组做互相关运算,再按通道相加即得到输出。图中阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:(1×1+2×2+4×3+5×4)+(0×0+1×1+3×2+4×3)=56(1×1+2×2+4×3+5×4)+(0×0+1×1+3×2+4×3)=56(
原创
发布博客 2022.01.25 ·
231 阅读 ·
1 点赞 ·
0 评论

【动手学深度学习_读书笔记】深度学习计算

深度学习计算文章目录深度学习计算1. 模型构造1.1 继承`Module`类来构造1.2 `Sequential`类来构造2. 模型参数的访问、初始化和共享2.1 访问模型的层数据2.1.1 访问多层感知机`net`的所有层数2.1.2 索引访问任意层2.2 初始化模型参数2.3 读模型参数2.4 读优化器参数3. 保存和加载模型3.1 保存和加载`state_dict`(推荐方式)3.2 保存和加载整个模型1. 模型构造1.1 继承Module类来构造import torchfrom torch
原创
发布博客 2022.01.25 ·
1273 阅读 ·
1 点赞 ·
0 评论

【动手学深度学习_读书笔记】深度学习基础

深度学习基础文章目录深度学习基础1 线性回归1.1 线性回归从零开始实现生成数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型1.2 线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型2 softmax回归2.1 softmax回归的从零开始实现获取数据集初始化模型参数实现softmax运算定义模型定义损失函数定义优化函数计算分类准确率模型训练2.2 softmax回归的简介实现获取和读取数据定义和初始化模型softmax和交叉熵损失函数定义优化算
原创
发布博客 2022.01.24 ·
1188 阅读 ·
0 点赞 ·
0 评论

【动手学深度学习_读书笔记】Tensor数据操作

Tensor数据操作文章目录Tensor数据操作1. Tensor创建2. 索引3. 改变形状4. 广播机制5. 运算的存储机制6. Tensor和NumPy相互转换7. 梯度1. Tensor创建# 导入一些常用库import torchfrom IPython import displayfrom matplotlib import pyplot as pltimport numpy as npimport randomimport torch.nn as nnimport torc
原创
发布博客 2022.01.23 ·
1003 阅读 ·
0 点赞 ·
0 评论

【经典进程同步问题】读者-写者问题

问题描述假设一个系统中,有读者和写者两组并发进程,共享一个文件,当两个或两个以上的读进程同时访问共享数据时不会产生问题,但若某个写进程和其他进程(读进程或写进程)同时访问共享数据时则可能导致数据不一致的错误。因此要求:1、允许多个读者可以同时对文件执行读操作。2、只允许一个写者往文件中写信息。3、任一写者在完成写操作之前不允许其他读者或写者工作。4、写者执行写操作前,应让已有的读者和写者全部退出。问题分析互斥访问:读者数目+1的时候使用mutex信号量保护,否则有可能出现读者增多了,但是读者
原创
发布博客 2021.06.21 ·
414 阅读 ·
1 点赞 ·
0 评论

【经典进程同步问题】多生产者-多消费者问题

问题描述桌子上有一只盘子,每次只能向其中放入一个水果。爸爸专向盘子中放苹果,妈妈专向盘子中放橘子,儿子专等着吃盘子中的橘子,女儿专等着吃盘子中的苹果。只有盘子空时,爸爸或妈妈才可向盘子中放一个水果。仅当盘子中有自己需要的水果时,儿子或女儿可以从盘子中取出水果。问题分析互斥访问:每个对盘子的操作都应该是互斥的,例如:女儿取苹果的时候,父亲和母亲不能放水果,儿子也不能取水果。进程同步:a. dad放入一个苹果,daughter才能吃一个;b. mum放入一个橘子,son才能吃一个;c. 盘子为
原创
发布博客 2021.06.21 ·
167 阅读 ·
0 点赞 ·
0 评论

【经典进程同步问题】生产者-消费者问题

问题描述生产者消费者问题(英语:Producer-consumer problem),也称有限缓冲问题(英语:Bounded-buffer problem),是一个多线程同步问题的经典案例。该问题描述了两个共享固定大小缓冲区的线程——即所谓的“生产者”和“消费者”——在实际运行时会发生的问题。生产者的主要作用是生成一定量的数据放到缓冲区中,然后重复此过程。与此同时,消费者也在缓冲区消耗这些数据。该问题的关键就是要保证生产者不会在缓冲区满时加入数据,消费者也不会在缓冲区中空时消耗数据。问题分析互斥访
原创
发布博客 2021.06.21 ·
154 阅读 ·
0 点赞 ·
0 评论

【实用软件测试教程】7-性能测试

7 性能测试7.1 性能测试基础性能测试的目的是验证软件系统是否能够达到用户要求的性能指标,同时发现软件系统中存在的性能瓶颈,最后起到优化系统的目的。性能测试:评估系统的能力识别系统中的瓶颈系统调优验证稳定性与可靠性7.1.1 性能测试的分类负载测试压力测试强度测试容量测试7.1.2 性能计数器性能计数器是描述服务器或操作系统性能的一些数据指标。影响一个系统性能的因素主要有:软件因素,包括系统软件、第三方软件等;硬件因素,如
原创
发布博客 2021.05.25 ·
69 阅读 ·
1 点赞 ·
0 评论

【实用软件测试教程】6-功能测试

6 功能测试功能模块是系统测试阶段的重点内容,软件系统开发的首要目标是确保功能正确。功能测试主要是根据软件系统的特征、操作描述和用户方案,测试其特性和可操作行为,以确定他满足设计需求。6.1 系统测试概论系统测试是通过与系统的需求规格做比较,发现软件与系统需求规格不相符或与之矛盾的地方。主要使用黑盒测试方法设计测试用例。系统测试的依据为需求规格说明书、概要设计说明书和各种规范。6.2 功能测试概述功能测试又称正确性测试,就是对产品的各项功能进行验证,根据功能测试用例,逐项测试,检查产
原创
发布博客 2021.05.24 ·
80 阅读 ·
0 点赞 ·
0 评论

【实用软件测试教程】5-集成测试

文章目录5 集成测试5.1 集成测试的定义5.2 集成测试的策略5.2.1 非增量式集成5.2.2 增量式集成策略5 集成测试5.1 集成测试的定义集成测试又称组装测试,是在单元测试的基础上,将所有模块安扎奥设计要求组装成子系统或系统,而进行的测试活动。集成测试的三个级别:模块内集成测试子系统内集成测试(模块)子系统间集成测试(可执行程序)5.2 集成测试的策略5.2.1 非增量式集成使用该方法进行集成时,首先分别测试每个模块,即对每一个模块都进行独立的单元测试。测试通过后,再
原创
发布博客 2021.05.24 ·
218 阅读 ·
0 点赞 ·
0 评论

【实用软件测试教程】4-单元测试

4 单元测试4.1 单元测试概述4.1.1 单元测试的定义单元的定义:具有明确的功能具有明确的规格定义具有与其他部分明确的接口定义能够与程序的其他部分清晰的区分单元测试的定义:依据详细设计规格说明书,对模块内所有重要的控制路径设计测试用例,以便发现模块内部的错误。多用白盒测试。单元测试的对象:在结构化程序时代,单元测试所说的单元是指函数,在面向对象编程中,单元测试的单元一般是指类。单元测试的时间:越早越好,通常在编码阶段进行。单元测试的人员:绝大部分情况下,由开发人员承担单元测试的
原创
发布博客 2021.05.24 ·
131 阅读 ·
0 点赞 ·
0 评论

【实用软件测试教程】3-白盒测试用例设计方法

文章目录3 白盒测试用例设计方法3.1 逻辑覆盖测试3.2 基本路径测试3.2.1 控制流图3.2.2 环形复杂度3.2.3 独立路径3.3 循环测试3.3.1 简单循环测试3.3.2 嵌套循环测试3.3.3 串接循环测试3.4 代码检查3.5 Rational Purify 应用3 白盒测试用例设计方法3.1 逻辑覆盖测试逻辑覆盖测试是以程序内在逻辑结构为基础的测试,重点关注测试覆盖率。包括以下六种类型:语句覆盖语句覆盖是指设计若干个测试用例,使程序中的每个可执行语句至少执行一次。
原创
发布博客 2021.05.24 ·
265 阅读 ·
1 点赞 ·
5 评论

【实用软件测试教程】2-黑盒测试用例设计方法

文章目录2 黑盒测试用例设计方法2.1 等价类划分法2.1.1 确定等价类的原则2.2.2 设计测试用例的步骤2.2 边界值分析法2.3 因果图法2.5 决策表法2.6 场景法2.7 正交实验法2 黑盒测试用例设计方法本章介绍经典的黑盒测试方法,包括等价类划分法、边界值分析法、因果图法、决策表法、场景法和正交实验法。2.1 等价类划分法其基本思想是把程序的输入域划分成若干个子集,然后从每一个子集中选取少量具有代表性的数据作为测试样例。在该子集中,各个输入数据对于揭示程序中的错误都是等效的。
原创
发布博客 2021.05.19 ·
177 阅读 ·
1 点赞 ·
2 评论
加载更多