力扣爆刷第116天之CodeTop100五连刷66-70
文章目录
一、144. 二叉树的前序遍历
题目链接:https://leetcode.cn/problems/binary-tree-preorder-traversal/description/
思路:前序遍历什么可以说的,在进入左右子树前收集节点。
class Solution {
List<Integer> list = new ArrayList<>();
public List<Integer> preorderTraversal(TreeNode root) {
if(root == null) return list;
list.add(root.val);
preorderTraversal(root.left);
preorderTraversal(root.right);
return list;
}
}
二、543. 二叉树的直径
题目链接:https://leetcode.cn/problems/diameter-of-binary-tree/description/
思路:求直径其实就是求某个节点的左子树深度与右子树深度,连接成的一个向上的尖括号,理解了这个关系,就直接像求深度一样,后序遍历,求左右子树深度,记录最大值即可。
class Solution {
int max = -1;
public int diameterOfBinaryTree(TreeNode root) {
traverse(root);
return max;
}
int traverse(TreeNode root) {
if(root == null) return 0;
int left = traverse(root.left);
int right = traverse(root.right);
max = Math.max(max, left + right);
return Math.max(left, right) + 1;
}
}
三、98. 验证二叉搜索树
题目链接:https://leetcode.cn/problems/validate-binary-search-tree/description/
思路:直接中序遍历,用一个变量记录前一个节点,然后中序遍历比较,如果不是,直接早停返回。
class Solution {
boolean flag = true;
TreeNode pro = null;
public boolean isValidBST(TreeNode root) {
traverse(root);
return flag;
}
void traverse(TreeNode root) {
if(root == null || !flag) return;
traverse(root.left);
if(pro != null) {
if(pro.val >= root.val) {
flag = false;
return;
}
}
pro = root;
traverse(root.right);
}
}
四、470. 用 Rand7() 实现 Rand10()
题目链接:https://leetcode.cn/problems/implement-rand10-using-rand7/description/
思路:可以采用概率组合,我们可以先用rand7构造出来一个p=0.2,再构造出来一个p=0.5,这两个事件构成一个事件的概率为p=0.1正好可以达到要求,例如先随机出来一个1-6的数,奇数偶数出现的概率为0.5,范围只要是偶数就行,然后我们再随机出来一个1-5的数,因为我们只放出来1-5,就相当于袋子里只有5个数,那每种数出现的概率就为0.2,然后组合到一块,判断第一个数是奇数还是偶数,通过这个返回1-5或者6-10。就相当于0.5*0.2;
class Solution extends SolBase {
public int rand10() {
int first, second;
while((first = rand7()) > 6) ;
while((second = rand7()) > 5) ;
return (first & 1) == 1 ? second : 5 + second;
}
}
五、64. 最小路径和
题目链接:https://leetcode.cn/problems/minimum-path-sum/description/
思路:定义dp[i][j]表示抵达grid[i][j]时的最短路径,由于只能从上和左的方向推出,则dp[i][j]=grid[i][j]+dp[i-1][j-1],如果要压缩到一维,也是可以的,注意初始化。
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length, n = grid[0].length;
int[] dp = new int[n+1];
Arrays.fill(dp, Integer.MAX_VALUE);
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
int t = Math.min(dp[j+1], dp[j]);
t = t == Integer.MAX_VALUE ? 0 : t;
dp[j+1] = grid[i][j] + t;
}
}
return dp[n];
}
}