自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 问答 (1)
  • 收藏
  • 关注

原创 Win10+Anoconda下安装配置GPU

Win10+Anoconda下安装配置Cuda、Cudnn、Tensorflower_gpu电脑NVIDIA GTX1650Ti显卡 ,驱动最高支持CUDA 11.1.114版本;最终选择安装下载CUDA10.0【2018.9】、CudNN7.6.4【2019.9】;安装Tensorflower_gpu==1.14.0;配置GPU步骤查看显卡及计算能力查看显卡对应的CUDA版本 查看CUDA对应的cuDNN对应的版本https://developer.nvidia.com/cuda-t

2021-05-14 16:09:11 553

原创 强化学习找金币游戏Gym环境测试调试问题

强化学习找金币游戏Gym环境测试调试问题  下图为机器人在网格世界找金币的示意图。该网格世界一共有8个状态,其中状态6和状态8为死亡区域,状态7为金币区域。机器人的初始位置为网格世界中任意一个状态。机器人从初始状态出发寻找金币。机器人进行一次探索,进入死亡区域或找到金币,本次探测结束。  机器人找到金币的回报为1,进入死亡区域回报为-1,机器人在区域1-5之间转换时,回报为0。  目标是找到一个策略使得机器人不管处在什么状态(1-5)都能找到金币。  在《深入浅出强化学习:原理入门》一书中给出找金

2020-07-09 13:38:01 1483 2

原创 强化学习入门——Win10+Anaconda+Gym环境配置

下载AnacondaAnaconda主要是用来创建独立的 Python 开发运行环境。如果你使用的主要的python版本能在下表中找到,那安装对应的anaconda当然更好如果你只是临时想用某个版本的python,或找不到对应版本,你大可以直接安装最新的anaconda,然后用conda create来创建虚拟环境即可,不用非得找到对应的anaconda来装。最佳的策略是你的机器上只保留一个anaconda,其中包含着你最常用的python版本,然后其他的版本环境全都用虚拟环境来管理。参考链接

2020-07-07 14:10:04 3532 1

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除