数论大集合

试除法判定质数

bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
            return false;
    return true;
}

试除法分解质因数

#include<bits/stdc++.h>
using namespace std;

void solve(int x){
    if(x<1)return ;
    if(x == 1 || x == 2){
        cout << x << " 1" <<endl;
        cout << endl;
        return ;
    }
    for(int i=2;i<=x/i;i++){
        if(x%i==0){
            int s = 0;
            while(x%i == 0) x = x/i , s++ ;
            cout << i << " " << s << endl;
        }
    }
    if(x > 1)cout << x << " 1" << endl;
    cout << endl;
}
int main(){
    int n;
    cin >> n;
    while(n--){
        int x;
        cin >> x;
        solve(x);
    }
}

朴素筛法求素数

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i]) continue;
        primes[cnt ++ ] = i;
        for (int j = i + i; j <= n; j += i)
            st[j] = true;
    }
}

试除法求所有约数

vector<int> get_divisors(int x)
{
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}

约数个数和约数之和

如果 N = p1^c1 * p2^c2 * ... *pk^ck
约数个数: (c1 + 1) * (c2 + 1) * ... * (ck + 1)
约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)

一些数乘积的约数个数

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9+7;

unordered_map<int,int > primes;
int n;
int main(){
    cin >> n;
    while(n--){
        int x;
        cin >> x;
        for(int i=2;i<=x/i;i++){
            while(x%i == 0){
                x = x/i;
                primes[i] ++ ;
            }
        }
        if(x > 1 ) primes[x] ++ ;
    }
    LL ans  = 1;
    for(auto prime : primes){
        ans = ans * (prime.second + 1) % MOD ; 
    }
    cout << ans << endl;
}

一些数乘积的约数之和

#include<bits/stdc++.h>
using namespace std;
const int MOD = 1e9+7;
typedef long long LL;
unordered_map<int ,int > primes;
int n;
int main(){
    cin >> n;
    while(n--){
        int x;
        cin >> x;
        for(int i=2;i<=x/i;i++){
            while(x%i == 0){
                primes[i] ++ ;
                x = x / i;
            }
        }
        if(x > 1)primes[x] ++ ;
    }
    
    LL ans = 1;
    for(auto prime : primes){
        int p = prime.first , a = prime.second;
        LL res = 1;
        while(a--) res = (res * p + 1 ) % MOD ;
        ans  = ans * res % MOD;
    }
    cout << ans%MOD << endl;
}

欧拉函数

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll ans ;
int main(){
    int n,x;
    cin >> n;
    while(n--){
        cin >>x;
        ans = x;
        for(int i=2;i<=x/i;i++){
            if(x%i==0){
                while(x%i==0)x = x/i;
                ans = ans / i * (i-1) ;
            }
        }
        if(x > 1 )ans = ans / x * (x-1) ;
        cout << ans <<endl;
    }
   
}

筛法求欧拉函数

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1100000;
int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数
bool st[N];         // st[x]存储x是否被筛掉


void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}

int main(){
    int n;
    cin >> n;
    get_eulers(n);
    ll ans = 0 ;
    for(int i=1;i<=n;i++)ans += euler[i] ;
    cout << ans << endl;
}

快速幂

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int qpow(int a,int b,int mod){
    int ans = 1;
    while(b){
        if(b&1) ans = (LL)ans * a % mod ;
        a = (LL)a * a % mod;
        b = b >> 1 ;
    }
    return ans ;
}
int main(){
    int a,b,mod;
    int t;
    cin >>t ;
    while(t--){
        cin >> a >> b >>mod;
         cout << qpow(a,b,mod) << endl;
    }
}

扩展欧几里得算法

// 求x, y,使得ax + by = gcd(a, b)
int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1; y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= (a/b) * x;
    return d;
}

递归法求组合数

// c[a][b] 表示从a个苹果中选b个的方案数
for (int i = 0; i < N; i ++ )
    for (int j = 0; j <= i; j ++ )
        if (!j) c[i][j] = 1;
        else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;

通过预处理逆元的方式求组合数

//首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]
//如果取模的数是质数,可以用费马小定理求逆元
// 预处理阶乘的余数和阶乘逆元的余数
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++ )
{
    fact[i] = (LL)fact[i - 1] * i % mod;
    infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
}


// 例子
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod = 1e9+7;
const int N = 110000;
int fact[N],infact[N];

int qpow(int a,int b,int p){
    int ans = 1;
    while(b){
        if(b&1) ans = (LL)ans * a % p;
        a = (LL)a * a % p;
        b = b >> 1;
    }
    return ans % p ;
}

int main() {
    fact[0] = infact[0] = 1;
    for(int i=1;i<N;i++){
        fact[i] = (LL) fact[i-1] * i % mod ;
        infact[i] = (LL) infact[i-1] * qpow(i,mod-2,mod) % mod ;
    }
    
    int t ;
    cin >>  t;
    while(t--){
        int a,b;
        cin >> a >> b;
        cout << (LL)fact[a] * infact[b] % mod * infact[a-b] % mod << endl;
    }
}

Lucas定理

若p是质数,则对于任意整数 1 <= m <= n,有:
    C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)

int qmi(int a, int k, int p)  // 快速幂模板
{
    int res = 1 % p;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

int C(int a, int b, int p)  // 通过定理求组合数C(a, b)
{
    if (a < b) return 0;

    LL x = 1, y = 1;  // x是分子,y是分母
    for (int i = a, j = 1; j <= b; i --, j ++ )
    {
        x = (LL)x * i % p;
        y = (LL) y * j % p;
    }

    return x * (LL)qmi(y, p - 2, p) % p;
}

int lucas(LL a, LL b, int p)
{
    if (a < p && b < p) return C(a, b, p);
    return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}

分解质因数法求组合数

当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:
    1. 筛法求出范围内的所有质数
    2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...
    3. 用高精度乘法将所有质因子相乘

int primes[N], cnt;     // 存储所有质数
int sum[N];     // 存储每个质数的次数
bool st[N];     // 存储每个数是否已被筛掉


void get_primes(int n)      // 线性筛法求素数
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}


int get(int n, int p)       // 求n!中的次数
{
    int res = 0;
    while (n)
    {
        res += n / p;
        n /= p;
    }
    return res;
}


vector<int> mul(vector<int> a, int b)       // 高精度乘低精度模板
{
    vector<int> c;
    int t = 0;
    for (int i = 0; i < a.size(); i ++ )
    {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }

    while (t)
    {
        c.push_back(t % 10);
        t /= 10;
    }

    return c;
}

get_primes(a);  // 预处理范围内的所有质数

for (int i = 0; i < cnt; i ++ )     // 求每个质因数的次数
{
    int p = primes[i];
    sum[i] = get(a, p) - get(b, p) - get(a - b, p);
}

vector<int> res;
res.push_back(1);

for (int i = 0; i < cnt; i ++ )     // 用高精度乘法将所有质因子相乘
    for (int j = 0; j < sum[i]; j ++ )
        res = mul(res, primes[i]);

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木木不会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值