给你一个下标从 1 开始的整数数组 numbers ,该数组已按 非递减顺序排列 ,请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] ,则 1 <= index1 < index2 <= numbers.length 。
以长度为 2 的整数数组 [index1, index2] 的形式返回这两个整数的下标 index1 和 index2。
你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。
你所设计的解决方案必须只使用常量级的额外空间。
示例 1:
输入:numbers = [2,7,11,15], target = 9
输出:[1,2]
解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
示例 2:
输入:numbers = [2,3,4], target = 6
输出:[1,3]
解释:2 与 4 之和等于目标数 6 。因此 index1 = 1, index2 = 3 。返回 [1, 3] 。
示例 3:
输入:numbers = [-1,0], target = -1
输出:[1,2]
解释:-1 与 0 之和等于目标数 -1 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
提示:
- 2 <= numbers.length <= 3 * 104
- -1000 <= numbers[i] <= 1000
- numbers 按 非递减顺序 排列
- -1000 <= target <= 1000
- 仅存在一个有效答案
解题思路:
首先,很自然想到使用暴力的手段解决,检查每个两两组合时间复杂度为O(n^2),当然,肯定会超时,中等难度的题不可能这么容易解决。
再看一下题目,输入的数组有序这几个字眼很关键,题目是找两个数之和等于target的两个数的索引,而给定的数组是从小到大排列的,这说明数组从左到右是依次增大,从右到左是依次减小,并且target肯定存在,那么我们就可以设置两个指针,数组头尾各一个,如果头尾指针所指位置元素相加小于target,就将头指针往右移,反之,则将尾指针往左移,这样逼近target,如此就能在O(n)时间内解决。
class Solution {
public int[] twoSum(int[] numbers, int target) {
int left=0,right = numbers.length-1;
int[] answer =new int[2];
while(left<right)
{
if(numbers[left] + numbers[right] == target)
{
answer[0] = left+1;
answer[1] = right+1;
break;
}
else if(numbers[left] + numbers[right] > target)
right--;
else
left++;
}
return answer;
}
}