中国剩余定理 && 扩展中国剩余定理(互质与不互质)-板子

本文探讨了中国剩余定理,它涉及寻找x的最小非负整数解,其中m1, m2, m3...mk是两两互质的整数。同时,还介绍了扩展中国剩余定理,该定理适用于m1, m2, m3...mk不一定互质的情况,同样解决x的最小非负整数解问题。并提供了相关的代码实现。" 137098738,5114941,Rust全栈实践:神经网络数字识别与快速布隆过滤器,"['rust', '神经网络', '开发语言', '后端', '人工智能']
摘要由CSDN通过智能技术生成

中国剩余定理

                                x = a1 (mod m1)

                                x = a2 (mod m2)

                                    ...

                                x = ak (mod mk)

其中 m1,m2,m3…mk 为两两互质的整数
求x的最小非负整数解
代码:

void exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1;
        y=0;
    }
    int d=exgcd(b,a%b,x,y);
    int tmp=x;
    x=y;
    y=tmp-a/b*y;
}

int china()
{
    int ans=0,lcm=1,x,y;
    for(int i=1; i<=k; ++i) 
        lcm*=b[i];
    for(int i=1; i<=k; ++i)
    {
        int tp=lcm/b[i];
        exgcd(tp,b[i],x,y);
        x=(x%b[i]+b[i])%b[i];//x要为最小非负整数解
        ans=(ans+tp*x*a[i])%lcm;
    }
    return (ans+lcm)%lcm;
}

扩展中国剩余定理 其中 m1,m2,m3…mk 不一定为两两互质的整数
求x的最小非负整数解

ll exgcd(ll a,ll b,ll &x,ll &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值