python数据分析01-数据分析、常见业务指标及常见分析方法

1 什么是数据分析?

数据分析:就是使用分析方法分析工具在大量数据中提取有价值的信息,形成有效结论,挖掘数据最大价值的过程。
再简单来说,数据分析就是用来分析数据对象内在规律的,变废为宝。
如果再做成图表,就更能清晰的看出其中的规律,方便对症下药。

1.1 必备技能

硬实力:

  1. Excel:数据存储、数据清洗、可视化方面,需要掌握常用的操作及重要函数,图标和数据透视功能。
  2. SQL:SQL语句的提取分析。
  3. SPSS:统计分析软件,提供可视化按钮。
  4. Python:数据爬取、分析,含数据分析第三方包numpy/pandas/matplotilib/sklearn。

软实力:

  1. 业务知识:要懂业务,要懂爬虫。
  2. 逻辑思维&分析方法:对比分析、多维度拆解分析、相关分析等。
  3. 沟通表达:良好的沟通能力,不说废话,擅长跨部门协作。
  4. 统计学知识:统计学原理,对知识的要求不高。
  5. 机器学习:机器学习模型和算法,有难度,但是发展好。

1.2 业务数据分析

  1. 数据支持
  2. 数据报表
  3. 数据监控,问题分析
  4. 专题报告

1.3 建议

做什么工作都不容易,当你下决心做一件事情的时候,不要只是三分钟热度,坚持下去,没有学不会的知识,也没有过不去的坎儿,只有不愿付出的努力,一起加油!

2 常见业务指标

公司肯定会有不同的分析场景,我们需要做的就是根据场景,明确问题,分析问题,然后提供数据支持,最后进行总结,得出有价值的结论。

  1. 明确问题
    明确数据来源,从时间地点事件角度。
    明确业务指标,指标的口径、数据对比等。

2.1 常用指标

用户数据

  1. 日增用户数
  2. 活跃用户数
  3. 活跃率
  4. 留存率:40-20-10法则
  5. 单位获客成本
  6. 客单价
  7. ARPU:Average Revenue Per Userÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值