暮年诗赋动江关
码龄6年
关注
提问 私信
  • 博客:4,257
    4,257
    总访问量
  • 3
    原创
  • 533,241
    排名
  • 7
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2018-10-25
博客简介:

qq_43517800的博客

查看详细资料
个人成就
  • 获得8次点赞
  • 内容获得4次评论
  • 获得17次收藏
创作历程
  • 1篇
    2022年
  • 2篇
    2020年
成就勋章
TA的专栏
  • 论文笔记
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

论文笔记-2022-When does Bias Transfer in Transfer Learning?

论文笔记-2022-When does Bias Transfer in Transfer Learning?
原创
发布博客 2022.07.12 ·
375 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【论文笔记】2019-WWW-Multiple Treatment Effect Estimation using Deep Generative Model with Task Embedding

背景 这篇文章考虑了一个新的causal inference设定:treatment不是简单的二元变量{0,1}\left\{0,1\right\}{0,1},而是二元变量的组合{0,1}k\left\{0,1\right\}^k{0,1}k。这个设定也比较好理解,还用医生治病的例子来说,通常医生使用的是多种药的组合。如果总共涉及到三种药物,而病人使用了第一种和第三种,则对应的k=3k=3k=3,treatment就是[1,0,1][1,0,1][1,0,1]。 挑战 这个设定的挑战在于如何设计针对多个tr
原创
发布博客 2020.11.01 ·
1063 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

【论文笔记】2017-NIPS-Causal Effect Inference with Deep Latent-Variable Models

Causal Effect Inference with Deep Latent-Variable Models 笔者最近在做causal inference这个方向,因此会把日常读到的还(neng)不(kan)错(dong)的paper简单整理一下做个笔记,欢迎感兴趣的童鞋交流讨论~ 背景 Causal inference涉及到的数据集通常由三个变量组成{X,T,Y}\left\{X,T,Y\right\}{X,T,Y}。其中,XXX代表特征(covariate),例如病人的身体、经济状况,TTT代表某个
原创
发布博客 2020.10.26 ·
2820 阅读 ·
6 点赞 ·
3 评论 ·
13 收藏