题目
二叉树的最大深度
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
题解
两种方法:深度优先、广度优先
深度优先搜索
java解
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if(root==null){
return 0;
}
int rootLeft = maxDepth(root.left);
int rootRight = maxDepth(root.right);
return Math.max(rootLeft,rootRight)+1;
}
}
python解
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxDepth(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
rootLeft = self.maxDepth(root.left)
rootRight = self.maxDepth(root.right)
return max(rootLeft,rootRight)+1
广度优先
java解
// 广度优先:每次层要遍历这一层所有元素 然后通过一个ans变量计数
遍历每一层要用到队列。java中队列由LinkedList
接口实现。
队列的特点是:先进先出。不可指定访问中间某个元素。
接口实现队列的常用方法:入队、出队、读取队首元素。
int size()
获取队列长度int size = queue.size();
boolean add(E)/boolean offer(E)
添加元素到对尾
E remove()/E poll()
获取队首元素并从队列中删除
E element()/E peek()
获取队首元素但并不从队列中删除
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
// 广度优先:每次层要遍历这一层所有元素 然后通过一个ans变量计数
// 第一步 判空
if(root==null){
return 0;
}
// 第二步 定义一个队列 队列的特点是先进先出、不能特定访问某个元素,
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
// 第三步 遍历树,进一层 出一层 ans+=1
int ans=0;
while(!queue.isEmpty()){
int size = queue.size();
while(size>0){
// 先出 队列首的元素
TreeNode node = queue.poll();
// 再进 队列首元素的左右节点
if(node.left!=null){
queue.offer(node.left);
}
if(node.right!=null){
queue.offer(node.right);
}
size--;
}
ans++;
}
return ans;
}
}