数字三角形

问题描述:
在这里插入图片描述
两种解题思路:
1.顺推法
题目要求从(1,1)出发到最底层路径最大权值和,路径中是各个点串联而成,路径起点固定,终点和中间点相对不固定。
定义F[x][y]表示从(1,1)出发到达(x,y)的路径最大权值和。
在这里插入图片描述
F[x][y]=?
向左:
F[x-1,y]+A[x,y];
向右:
F[x-1,y-1]+A[x,y];
递推边界条件:F[1][1]=A[1][1]
最终答案:
Ans=max{F[N][1],F[N][2],…,F[N][N]}

代码实现:

#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 1005;
int A[MAXN][MAXN],F[MAXN][MAXN],N;
int main(){	
	cin >> N;	
	for(int i=1;i<=N;i++)	    
		for(int j=1;j<=i;j++)
			cin>>A[i][j];
  	F[1][1]=A[1][1];	
	for(int i=2;i<=N;i++)                 
		for(int j=1;j<=i;j++) 
			F[i][j]=max(F[i-1][j-1],F[i-1][j])+A[i][j];
  	int ans=0;	
	for(int i=1;i<=N;i++)	    
		ans=max(ans,F[N][i]);
  	cout<<ans<<endl;	
	return 0; 
}

2.逆推法
定义F[x][y]表示从n层出发到达(x,y)的路径最大权值和。
自底向上计算:(给出递推式和终止条件)
①从底层开始,本身数即为最大数;
②倒数第二层的计算,取决于底层的数据:12+6=18,13+14=27,24+15=39,24+8=32;
③倒数第三层的计算,取决于底二层计算的数据:27+12=39,39+7=46,39+26=65
F[i][j]=max(F[i+1][j],F[i+1][j+1])+A[i][j];
递推边界条件: F[n][i]=A[n][i]

代码实现:

#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 1005;
int A[MAXN][MAXN],F[MAXN][MAXN],N;
int max(int a,int b){
	if(a>b)	return a;
	return b;
}
int main(){
	int i;cin>>N;
	for( i=1;i<=N;i++)
		for(int j=1;j<=i;j++)
			cin>>A[i][j];
	for( i=1;i<=N;i++)
		F[N][i]=A[N][i];
	for( i=N-1;i>=1;i--)
		for(int j = 1;j <= i;j ++)
			F[i][j]=max(F[i+1][j],F[i+1][j+1])+A[i][j];
	cout<<F[1][1]<<endl;
	return 0;
  }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值