问题描述:
两种解题思路:
1.顺推法
题目要求从(1,1)出发到最底层路径最大权值和,路径中是各个点串联而成,路径起点固定,终点和中间点相对不固定。
定义F[x][y]表示从(1,1)出发到达(x,y)的路径最大权值和。
F[x][y]=?
向左:
F[x-1,y]+A[x,y];
向右:
F[x-1,y-1]+A[x,y];
递推边界条件:F[1][1]=A[1][1]
最终答案:
Ans=max{F[N][1],F[N][2],…,F[N][N]}
代码实现:
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 1005;
int A[MAXN][MAXN],F[MAXN][MAXN],N;
int main(){
cin >> N;
for(int i=1;i<=N;i++)
for(int j=1;j<=i;j++)
cin>>A[i][j];
F[1][1]=A[1][1];
for(int i=2;i<=N;i++)
for(int j=1;j<=i;j++)
F[i][j]=max(F[i-1][j-1],F[i-1][j])+A[i][j];
int ans=0;
for(int i=1;i<=N;i++)
ans=max(ans,F[N][i]);
cout<<ans<<endl;
return 0;
}
2.逆推法
定义F[x][y]表示从n层出发到达(x,y)的路径最大权值和。
自底向上计算:(给出递推式和终止条件)
①从底层开始,本身数即为最大数;
②倒数第二层的计算,取决于底层的数据:12+6=18,13+14=27,24+15=39,24+8=32;
③倒数第三层的计算,取决于底二层计算的数据:27+12=39,39+7=46,39+26=65
F[i][j]=max(F[i+1][j],F[i+1][j+1])+A[i][j];
递推边界条件: F[n][i]=A[n][i]
代码实现:
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 1005;
int A[MAXN][MAXN],F[MAXN][MAXN],N;
int max(int a,int b){
if(a>b) return a;
return b;
}
int main(){
int i;cin>>N;
for( i=1;i<=N;i++)
for(int j=1;j<=i;j++)
cin>>A[i][j];
for( i=1;i<=N;i++)
F[N][i]=A[N][i];
for( i=N-1;i>=1;i--)
for(int j = 1;j <= i;j ++)
F[i][j]=max(F[i+1][j],F[i+1][j+1])+A[i][j];
cout<<F[1][1]<<endl;
return 0;
}